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The paper investigates the approximation properties of linear means of Fourier series generated 

by repeated application of the de la Vallée Poussin summation method. Asymptotic formulas for 

the exact upper bounds of deviations of the r-repeated de la Vallée Poussin means on the classes 

of Poisson integrals of functions with bounded generalized derivatives are obtained. The derived 

relations, under certain conditions, represent asymptotically exact equalities. 
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I. INTRODUCTION 

The work concerns the questions of approximation of 

periodic ( )  -differentiable functions of high smoothness 

by repeated arithmetic means of Fourier sums. One of the 

classifications of periodic functions nowadays is the 

classification suggested by A. Stepanets [1] which is based 

on the concept of ( )  -differentiation. The given 

classification allows to distinguish all classes of summable 

periodic functions from the functions where the Fourier series 

can deviate to infinitely differentiable functions including 

analytical and entire ones. When choosing the parameters 

properly, classes of ( )  -differentiable functions exactly 

coincide with the well-known classes of Vail differentiable 

functions, Sobolev classes 
l
pW  and classes of convolutions 

with integral kernels.  

Sets of 
 
-differentiable functions are defined in the 

following way [1, p. 120].  

Let  be a summable, -periodic function, 

𝑆(𝑓) =
𝑎0

2
+ ∑

𝑘=1

∞

(𝑎𝑘𝑐𝑜𝑠𝑘𝑥 + 𝑏𝑘𝑠𝑖𝑛𝑘𝑥) = ∑
𝑘=0

∞

𝐴𝑘(𝑓; 𝑥) 

be its Fourier series. Let  be an arbitrary numerical 

sequence and  Then, if the series  

∑
𝑘=𝑚+1

𝑛 1

𝜓(𝑘)
(𝑎𝑘𝑐𝑜𝑠(𝑘𝑥 +

𝛽𝜋

2
) + 𝑏𝑘𝑠𝑖𝑛(𝑘𝑥 +

𝛽𝜋

2
)) 

is Fourier series of some summable function, this function is 

called -derivative of function  and is denoted by 

. The set of continuous  functions having -

derivative is denoted by . Besides, if -derivative is 

almost everywhere bounded by unity, the set of such 

functions is denoted by . We consider the case when 

sequence  is defined by relationship  

 In doing so classes  consist of analytical 

functions which can be regularly extended in the 

corresponding strip.  

Numerical sequence ( )k , giving the class is possible to 

select only from the set of all positive convex downwards and 

disappearing on the infinity sequences. In this case 

approximative properties of classes C

  are to characterized 

by the rate of functions ( )k  tending to zero.  

We consider the case when sequence ( )k  is defined by 

relationship ( ) kk q    (0 1)q    In doing so classes C

  

consist of analytical functions which can be regularly 

extended in the corresponding strip 1Im ln
q

z  . In this case 

classes C

  are denoted by 

q
C . The functions from 

classes 
q

C  in each point  can be presented in the form of 

Poisson integrals with an accuracy to the constant component  

1

1
( ) ( ) cos( )

2

k

k

f x f x t q kt dt















     

( ) 

f 2

( )k

R  

( )  f

f

 ( ) 

C

 ( ) 

C



( )k ( ) kk q  

(0 1)q   C


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Let 
( )n
k
    ,k 1 2,n …   is an infinite numerical 

matrix 
( )

0
n

k
    k n   Each matrix of such kind, on the 

basis of the Fourier series, gives a certain sequence of linear 

polynomial operators  

1
( )0

1

( ) ( cos sin )
2

n
n

n k kk
k

a
U f x a kx b kx





       

For arbitrary natural p n  the polynomials that are 

given by relationship  

( )
1, 1 1

1 , 1

n
k

k n p

k n p
n p k n

p



     


   
    



 

are called de la Vallee Poussin sums. 

De la Vallee Poussin sums are also arithmetic means of the 

last  Fourier sums [2, 3] 

𝑉𝑛,𝑝(𝑓; 𝑥) =
1

𝑝
∑

𝑘=𝑛−𝑝

𝑛−1

𝑆𝑘(𝑓; 𝑥)  

For arbitrary natural    and 

  the polynomials that are given by 

relationship  

𝑉𝑛,𝑝1,𝑝2,…,𝑝𝑟

(𝑟) (𝑓; 𝑥)

=
1

𝑝1

∑
𝑘1=𝑛−𝑝1

𝑛−1 1

𝑝2

∑ …
1

𝑝𝑟

𝑘1

𝑘2=𝑘1−𝑝2+1

∑ 𝑆𝑘𝑟
(𝑓; 𝑥)

𝑘𝑟−1

𝑘𝑟=𝑘𝑟−1−𝑝𝑟+1

 

are called -repeated de la Vallee Poussin sums [7,8, 9]. 

If 1 1p   or 2 1p   these polynomials are de la Vallee 

Poussin sums, if 1 2 1p p    they are Fourier sums.  

For upper bounds of deviations of Fourier sums on the classes 

of analytical functions S. Nikol’skiy [7] obtained the 

asymptotic equality:  

𝜀(𝐶𝛽,∞
𝑞

; 𝑆𝑛) = 𝑠𝑢𝑝
𝑓∈𝐶

𝛽,∞
𝑞

∥ 𝑓(𝑥) − 𝑆𝑛(𝑓; 𝑥) ∥𝐶=
8𝑞𝑛

𝜋2
𝐾(𝑞) 

+𝑂 (
1

𝑛
) , 𝑛 → ∞ 

In [8] S. Stechkin proposed another proof of this result which 

made it possible to refine the remainder in this formula. 

Asymptotic equalities for upper bounds of the deviations of 

de la Vallee Poussin sums on the classes  may be found 

in [9] (look also [10, 11]). 

If 1 1p   or 2 1p   these polynomials are de la Vallee 

Poussin sums, if 1 2 1p p    they are Fourier sums.  

 

II.  RESULT 

For upper bounds of deviations of the -repeated de la Vallee 

Poussin sums on the classes of analytical functions  the 

following statement was obtained.  

Theorem. Suppose that   and  

 are arbitrary natural numbers, . 

Then the following relations hold as    

  𝜀 (𝐶𝛽,∞
𝑞

; 𝑉𝑛,𝑝
(𝑟)(𝑓; 𝑥)) =

4𝑞𝑛−𝛴𝑝+𝑟

𝜋
2 ∏
𝑖=1

𝑟
𝑝𝑖

∫
0

𝜋

𝑍𝑞
𝑟+1(𝑥)𝑑𝑥      

+𝑂(1)
1

∏
𝑖=1

𝑟
𝑝𝑖

 
𝑞𝑛−𝛴𝑝+𝑟

(𝑛−𝛴𝑝+𝑟)(1−𝑞)𝑟+2 + ∑
𝛼𝑟−1⊂𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1
𝑝𝑗+𝑟

(1−𝑞)𝑟+1  ,  (1)  

where   is an arbitrary 

-element’s subset of set   is number 

of elements of set   is quantity uniformly bounded 

with respect to       

Proof. The statement of the theorem are proved using the 

procedure proposed by A. Stepanets in [1, p. 294]. While 

constructing the proof, first the convenient integral 

representations for quantities  were found  

𝛿𝑛(𝑓; 𝑥; 𝑉𝑛,𝑝
(𝑟)

)

= 𝑓(𝑥) −
1

𝑝1

∑
1

𝑝2
𝑘1=𝑛−𝑝1

𝑛−

∑

1

…
1

𝑝𝑟

𝑘1

𝑘2=𝑘1−𝑝2+

∑

1

𝑆𝑘𝑟
(𝑓; 𝑥)

𝑘𝑟−1

𝑘𝑟=𝑘𝑟−1−𝑝𝑟+1

 

=
1

∏
𝑖=1

𝑟

𝑝𝑖

∑
𝑘1=𝑛−𝑝1

𝑛−

∑
1

…
1

𝑝𝑟

𝑘1

𝑘2=𝑘1−𝑝2+

∑

1

(𝑓(𝑥)

𝑘𝑟−1

𝑘𝑟=𝑘𝑟−1−𝑝𝑟+1

−𝑆𝑘𝑟
(𝑓; 𝑥)) 

=
1

𝜋 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋 𝑓𝛽
𝜓
(𝑥 + 𝑡)

(1 − 2𝑞𝑐𝑜𝑠𝑡 + 𝑞2)𝑟+1
∑

𝛼∈𝑟
(−1)𝑟−|𝛼| 

× ∑
𝜈=0

𝑟+1

(−1)𝜈𝐶𝑟+1
𝜈 𝑞

𝑛− ∑
𝑗∈𝛼

𝑝𝑗+𝑟−𝜈
⬚

𝑐𝑜𝑠  (𝑛 − ∑
𝑗∈𝛼

𝑝𝑗 + 𝑟 − 𝜈
⬚

)𝑡 +
𝛽𝜋

2
 𝑑𝑡, 

                 (2)  

where  is number of elements of  set ,   

Further let  

𝑏𝑚
𝛽
(𝑡) = (1 − 2𝑞𝑐𝑜𝑠𝑡 + 𝑞2)−

𝑟+1
2 cos(𝑚𝑡 + 

+
𝛽𝜋

2
+ (𝑟 + 1)

𝑠𝑖𝑛𝑡

1−𝑞𝑐𝑜𝑠𝑡
). 

Then the quantity  may be represented as 

follows  

𝛿𝑛(𝑓; 𝑥; 𝑉
𝑛,𝑝

(𝑟)
) =

𝑞𝑛−𝛴𝑝+𝑟

𝜋 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋

𝑓𝛽
𝜓
(𝑥 + 𝑡)𝑏𝑛−𝛴𝑝+𝑟

𝛽
(𝑡)𝑑𝑡 + 

+𝑂(1)
1

∏
𝑖=1

𝑟
𝑝𝑖

∑
𝛼𝑟−1∈𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1

𝑝𝑗+𝑟
∫
−𝜋

𝜋

𝑓𝛽
𝜓
(𝑥 + 𝑡)𝑏𝑛− ∑

𝑗∈𝛼𝑟−1

𝑝𝑗+𝑟
𝛽

(𝑡)𝑑𝑡.

                              (3) 

Taking into account that  also (3) one can find 

the upper value for quantity   

p

1p  2p   rp

1

r

p i
i

p n


  

r

q
C

r

q
C

(0 1)q   R  ( ),i ip p n

1 2i r  

1

r

p i
i

p n


  

n  pn 

2 1 2( ) (1 2 cos )qZ x q x q      1r 

1r  {1 2 },r r   r 

,r (1)O

n q  ,ip 1 2i r   

( )
( )

r
n n pf x V  

   {1 2 }r r   

( )
( )

r
n n pf x V  

( ) ,
q

f x C

( )
( ; )

q r
n pC V 
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𝜀(𝐶𝛽,∞
𝜓

; 𝑉𝑛,𝑝

(𝑟)
(𝑓; 𝑥)) ≤

4𝑞𝑛−𝛴𝑝+𝑟

𝜋2 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋

|𝑏𝑛−𝛴𝑝+𝑟
𝛽

(𝑡)|𝑑𝑡 

+𝑂(1)
1

∏
𝑖=1

𝑟
𝑝𝑖

∑
𝛼𝑟−1∈𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1

𝑝𝑗+𝑟
∫
−𝜋

𝜋

|𝑏𝑛− ∑
𝑗∈𝛼𝑟−1

𝑝𝑗+𝑟
𝛽

(𝑡)|𝑑𝑡,      (4) 

Using work [1, p. 294] (also [6, p. 235–238]), further we find 

function  for which this value cannot be 

improved. As  

∫
−𝜋

𝜋

|𝑏𝑚
𝛽
(𝑡)|𝑑𝑡 = 𝑂(1) ∫

−𝜋

𝜋 𝑑𝑡

( 1 − 𝑞𝑐𝑜𝑠𝑡 + 𝑞2)𝑟+1

= 𝑂(1)
1

(1 − 𝑞)𝑟+1
, 

 

the quantity  can be rewritten as follows  

 

𝛿𝑛(𝑓; 𝑥; 𝑉𝑛,𝑝

(𝑟)
) =

𝑞𝑛−𝛴𝑝+𝑟

𝜋 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋

𝑓𝛽
𝜓
(𝑥 + 𝑡)𝑏𝑛−𝛴𝑝+𝑟

𝛽
(𝑡)𝑑𝑡 

+𝑂(1)
1

∏
𝑖=1

𝑟
𝑝𝑖

∑
𝛼𝑟−1∈𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1
𝑝𝑗+𝑟

(1−𝑞)𝑟+1 .         (5) 

Based on formula (5) for any function  the 

following equality is true 

𝛿𝑛(𝑓; 0; 𝑉
𝑛,𝑝

(𝑟)
) =

𝑞𝑛−𝛴𝑝+𝑟

𝜋 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋

𝑓𝛽
𝜓
(𝑥)𝑏𝑛−𝛴𝑝+𝑟

𝛽
(𝑡)𝑑𝑡 

+𝑂(1)
1

∏
𝑖=1

𝑟
𝑝𝑖

∑
𝛼𝑟−1∈𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1
𝑝𝑗+𝑟

(1−𝑞)𝑟+1 .              (6) 

Functions 𝑏𝑛−𝛴𝑝+𝑟
𝛽

(𝑡)  may be refined on the set, the 

measure of which is less than K( 𝑛 − 𝛴𝑝 + 𝑟)
 

 

so that the following condition for new functions 𝑏𝑛−𝛴𝑝+𝑟
𝛽,1

(𝑡) 

will be fulfilled [9, p. 235–238] 𝑏𝑛−𝛴𝑝+𝑟
𝛽,1 (𝑡)𝑑𝑡 = 0. 

For the found function the equality is true  

𝛿𝑛(𝑓0; 0; 𝑉𝑛,𝑝

(𝑟)
) =

𝑞𝑛−𝛴𝑝+𝑟

𝜋 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋

|𝑏𝑛−𝛴𝑝+𝑟
𝛽

(𝑡)|𝑑𝑡 

+𝑂(1)
1

∏
𝑖=1

𝑟
𝑝𝑖

 ∑
𝛼𝑟−1∈𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1
𝑝𝑗+𝑟

(1−𝑞)𝑟+1 +
𝑞𝑛−𝛴𝑝+𝑟

(𝑛−𝛴𝑝+𝑟)(1−𝑞)𝑟+2 .  (7) 

Comparing relationships (4) and (7) we get asymptotic 

formula  

𝜀(𝐶𝛽,∞
𝑞

; 𝑉𝑛,𝑝

(𝑟)
(𝑓; 𝑥)) = 𝑠𝑢𝑝

𝑓∈𝐶
𝛽,∞
𝑞

∥ 𝑓(𝑥) − 𝑉𝑛,𝑝

(𝑟)
(𝑓; 𝑥) ∥𝐶 

=
𝑞𝑛−𝛴𝑝+𝑟

𝜋 ∏
𝑖=1

𝑟

𝑝𝑖

∫
−𝜋

𝜋

|𝑏𝑛−𝛴𝑝+𝑟
𝛽

(𝑡)|𝑑𝑡 

+𝑂(1)
1

∏
𝑖=1

𝑟

𝑝
𝑖

 ∑
𝛼𝑟−1∈𝑟

𝑞
𝑛− ∑

𝑗∈𝛼𝑟−1

𝑝𝑗+𝑟

(1 − 𝑞)𝑟+1 +
𝑞𝑛−𝛴𝑝+𝑟

(𝑛 − 𝛴𝑝 + 𝑟)(1 − 𝑞)𝑟+2 . 

According to [6, p. 239–241] and counting the integral in the 

first component  

 

∫
−𝜋

𝜋

 𝑏𝑛−𝛴𝑝+𝑟
𝛽 (𝑡) 𝑑𝑡 = 𝑂(1) ∫

−𝜋

𝜋 1

( 1 − 𝑞𝑐𝑜𝑠𝑡 + 𝑞2)𝑟+1
 

× 𝑐𝑜𝑠 ((𝑛 − 𝛴𝑝 + 𝑟)𝑡 +
𝛽𝜋

2
+ (𝑟 + 1)

𝑞𝑠𝑖𝑛𝑡

1 − 𝑐𝑜𝑠𝑡
)𝑑𝑡 

=
4

𝜋
∫
0

𝜋

𝑍𝑞
𝑟+1(𝑥)𝑑𝑥 + 𝑂(1)

1

𝑛−𝛴𝑝+𝑟
, 

we obtain the equality (1). The theorem is proved.  

 

III. CONCLUSION 

The problem connected with the search for upper bounds of 

approximation errors with respect to a class of Poisson 

integrals and for repeated de la Vallee Poussin sums is 

considered. Our approach turned out to be effective for 

obtaining exact asymptotic. The key point in this approach is 

to construct the function 𝑓0(𝑥)𝜖𝐶𝛽,∞
𝑞

 that implements the 

upper bound. 
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