

4553 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

 Volume 12 Issue 11 November 2024, Page no. –4553-4561

 Index Copernicus ICV: 57.55, Impact Factor: 8.316

 DOI: 10.47191/ijmcr/v12i11.01

Efficient Workflow Scheduling for Minimizing Data Transfers and

Enhancing Resource Utilization in Cloud IaaS Platforms

Jean Edgard GNIMASSOUN1, Akanza Konan RickyN'DRI2, Dagou Dangui Augustin Sylvain Legrand KOFFI3
1Université de San Pedro, San Pedro, Côte d’Ivoire
2Université Alassane Ouattara, Bouaké, Côte d’Ivoire
3Ecole Supérieure Africaine des Technologies d’Information et de Communication, Abidjan, Côte d’Ivoire

ARTICLE INFO ABSTRACT

Corresponding Author:

Jean Edgard GNIMASSOUN

Cloud IaaS platforms readily provide access to homogeneous multi-core machines, whether

they are physical ("bare metal") or virtual machines. Each of these machines can be equipped

with high-performance SSD disks, enabling the distribution of workflow-generated files

across multiple machines, which helps minimize the overhead associated with data transfers.

In this paper, we propose a scheduling algorithm called SMDT-ERU (Scheduling for

Minimizing Data Transfer - Enhancing Resource Utilization), designed to reduce the

makespan of data-intensive workflows by minimizing data transfers between dependent

tasks over the network. Intermediate files generated by tasks are stored locally on the disk

of the machine where the tasks are executed.

Through experimentation, we confirm that increasing the number of cores per machine

reduces the additional costs caused by network data transfers. Real-world workflow

experiments demonstrate the advantages of the proposed algorithm. Our data-driven

scheduling approach significantly reduces execution time and the volume of data transferred

over the network, outperforming one of the leading state-of-the-art algorithms, which we

have adapted to fit our assumptions.

KEYWORDS: Workflow scheduling; makespan reduction; IaaS Cloud

I. INTRODUCTION

Data-intensive parallel applications (scientific workflows),

represented as Directed Acyclic Graphs (DAGs) [1], [2],

originate from various fields such as biology, astronomy, and

physics. They are characterized by their complex structure and

high demands for computing and storage resources. The

transition from grid environments to cloud computing has

consistently shaped the execution of scientific workflows, which

now leverage virtual, dynamic, and scalable resources. These

workflows allow researchers to express the necessary steps to

transform vast amounts of data generated by scientific

experiments into meaningful scientific results. Typically, the

execution of these data-intensive applications, composed of

hundreds of computational tasks, is managed by a Workflow

Management System (WMS) [3], which abstracts the

complexities of resource selection, data management, and

computation scheduling for the end user.

However, with the emergence of major cloud service

providers such as Amazon, Google, and Microsoft,

Infrastructure as a Service (IaaS) has become a viable alternative

to traditional clusters and grids. IaaS combines the advantages

of these systems by offering virtually unlimited resources with

flexible accessibility. This capability allows WMS to design

computing and storage infrastructures tailored to specific

workflows, leveraging a targeted set of virtual machine

instances.

One notable advantage of scientific workflows is their

independence from the specific characteristics of the underlying

infrastructure. This flexibility enables users to execute the same

workflow on different infrastructures without modifying their

applications. However, this also leads to the common practice of

managing task dependencies through file transfers. Intermediate

data produced by a task is typically written to disk and then

transferred over the network to another storage device for

consumption by another task.

https://doi.org/10.47191/ijmcr/v12i11.01

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4554 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

While existing algorithms address the scheduling of

workflows on IaaS cloud infrastructures, many do not account

for the complexities associated with executing tasks on multi-

core virtual machines. This oversight can lead to unnecessary

data transfers, adversely affecting overall execution time. Given

that Amazon EC2 allows the deployment of virtual machines

with up to ninety-six parallel computing cores [4], our work aims

to leverage this capability. By placing dependent tasks on the

same virtual machine, we can effectively reduce communication

time, which is crucial for improving workflow efficiency.

The challenge of mapping workflow tasks in a cloud

computing environment remains a subject of extensive research,

with several heuristics and metaheuristics proposed to optimize

execution time and resource utilization. However, many existing

approaches overlook the importance of data locality, focusing

primarily on data produced by predecessor tasks. By considering

both the execution time of individual tasks and the data transfer

time between dependent tasks, our research aims to enhance

workflow execution. The central question addressed in this paper

is how to effectively map the tasks of a data-intensive

application while minimizing file transfers over the network to

achieve better execution times.

In this paper, we propose an innovative approach that

leverages the unique characteristics of Amazon Web Services

virtual machine instances, specifically their large number of

cores and dedicated storage space on fast SSD drives. Our goal

is to improve data locality, thereby reducing data transfers over

the network during workflow execution, which should have a

direct and beneficial impact on overall execution time.

II. RELATED WORKS

Cloud computing has significantly changed the way scientific

and industrial workflows are executed, providing scalable and

elastic resources to handle complex tasks. However, optimizing

the scheduling of workflows in these environments remains a

major challenge, especially when it comes to minimizing

conflicting objectives such as makespan and execution costs

while adhering to quality of service (QoS) constraints. Various

algorithms and approaches have been developed to address

these requirements, utilizing multi-objective methods,

heuristics, and artificial intelligence (AI).

A systematic review of task scheduling algorithms in cloud

computing was conducted by Krishna and Mangalampalli [5],

highlighting the different methods used to manage workflow

complexity. The study classified the algorithms based on their

ability to balance workloads, optimize resources, and handle

time constraints. This in-depth review provides a solid

foundation for understanding how both classical and advanced

algorithms meet the increasingly complex needs of cloud

infrastructures. Yang et al. [6], in their work on classification-

based workflow scheduling in cloud environments, proposed an

approach that considers the diversity of workflows. Their

method optimizes scheduling by classifying tasks based on their

characteristics, thereby offering better resource management in

dynamic environments. This approach is particularly effective

in multi-tier environments where tasks vary significantly in

terms of complexity and resource requirements.

Resource optimization in Infrastructure as a Service (IaaS)

environments is crucial to improving overall system

performance. Zhu and Tang [7] proposed a workflow

scheduling approach for deadline-constrained tasks in IaaS

clouds, using multi-resource packing. Their method aims to

maximize resource utilization while ensuring that task deadlines

are met, highlighting the challenges of managing heterogeneous

resources in distributed environments. Other studies have

focused on enhancing existing algorithms to adapt to hybrid

cloud-edge environments. For instance, Alsadie and Alsulami

[8] proposed a modified Firefly algorithm to improve workflow

efficiency in hybrid cloud-edge environments. This solution

reduces latency and improves task distribution by leveraging

both local and remote computing resources.

Improving classical scheduling algorithms remains an area of

interest for many researchers. Murad et al. [9] presented an

optimized version of the Min-Min algorithm for scientific

workflow scheduling in the cloud, focusing on minimizing task

waiting times. Their approach offers a notable reduction in

workflow execution times, particularly in compute-intensive

environments. Additionally, Patil and Thankachan [10]

conducted a comparative study of various scheduling

algorithms in cloud environments, highlighting the strengths

and weaknesses of each method based on the size and

complexity of workflows.

Sukhoroslov [11] studied the scheduling of workflows with

specific resource requirements in cluster environments. His

work emphasizes the importance of matching the resource

needs of tasks with the capabilities of available compute nodes.

This approach improves task distribution and optimizes

resource usage in high-performance computing (HPC)

environments.

Multi-objective optimization is one of the most studied

approaches for workflow scheduling, as it allows for

simultaneous consideration of multiple criteria. Akraminejad et

al. [12] proposed a crow search algorithm to optimize both

makespan and costs in scientific cloud workflows. Similarly,

Bansal and Aggarwal [13] explored the hybridization of PSO

and WOA algorithms in cloud-fog environments to improve

scheduling in a multi-objective framework. These works clearly

demonstrate the importance of multi-objective optimization in

the effective allocation of resources in large-scale cloud

environments. Raeisi-Varzaneh et al. [14] also contributed to

this research by introducing an improved Max–Min algorithm

focused on cost reduction during task allocation in workflows,

further emphasizing that resource management is crucial for

ensuring efficient execution in large-scale cloud settings.

Alongside multi-objective approaches, heuristic algorithms

remain widely used due to their ability to quickly provide

approximate solutions in complex environments. Sun et al. [15]

introduced a hybrid algorithm, ET2FA, which combines

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4555 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

heuristic techniques with resource adjustment methods to

optimize scheduling for deadline-constrained workflows. This

approach significantly reduced task execution times.

Complementarily, Mangalampalli et al. [16] proposed a deep

reinforcement learning-based scheduling algorithm

(DRLBTSA), demonstrating that reinforcement learning

algorithms can learn from execution data to optimize task

allocation in the cloud. These works highlight the growing

integration of AI and machine learning techniques in workflow

optimization.

Comparative studies of the performance of different

scheduling algorithms have also highlighted the diversity of

existing solutions and their respective advantages. Kumar and

Chander [17] conducted a comparative analysis of major task

scheduling algorithms in cloud environments, emphasizing that

hybrid methods, which combine multiple techniques, often

yield the best performance. Concurrently, Sadotra et al. [18]

focused on scheduling in the context of green computing,

demonstrating that scheduling algorithms can be optimized to

reduce the energy footprint of cloud systems, which has become

an increasing concern in light of environmental considerations.

Another critical aspect of workflow scheduling in the cloud

is resource management under constraints. Cloud environments

are often characterized by limited resource availability, and task

execution times can be uncertain. Taghinezhad-Niar et al. [19]

addressed this issue by proposing an approach that takes into

account uncertainties in task execution times while ensuring

acceptable QoS levels. This approach allows for better resource

management in unpredictable environments. Additionally, Sun

et al. [20] introduced a resource optimization method called

multi-resource packing, which maximizes resource utilization

while adhering to time constraints. These works demonstrate

that fine-grained resource management is essential for effective

workflow planning.

Finally, the integration of artificial intelligence into

workflow management is becoming increasingly important.

Mustapha and Gupta [21] introduced a DBSCAN-inspired task

scheduling algorithm for cloud infrastructures, illustrating how

clustering techniques can enhance resource allocation. This

approach utilizes the density of data clusters to optimize task

distribution and avoid resource overloads. These new AI-based

methods pave the way for more dynamic and adaptive solutions

for scheduling in complex cloud environments. Heuristic

algorithms and AI-based approaches continue to play a key role

in optimizing workflow performance. Sandhu et al. [22]

explored optimization strategies to enhance task scheduling

performance in cloud computing. Their research demonstrated

that integrating heuristics into scheduling processes led to

significant improvements in response times and processing

costs. Similarly, Mikram et al. [23] proposed a new hybrid

algorithm, HEPGA, which combines evolutionary algorithms

with knowledge-based scheduling approaches to solve the

scheduling problem in cloud environments. Their approach has

shown increased efficiency in resource management and the

optimization of complex scientific workflows.

In summary, optimizing workflow scheduling in cloud

environments continues to prompt intensive research, with

significant contributions in the fields of heuristic algorithms,

multi-objective approaches, and AI-based methods. Challenges

related to resource management, cost minimization, and

makespan improvement remain critical, and hybrid or AI-based

solutions have proven promising in addressing these issues in

ever-evolving cloud environments.

III. PLATFORM AND APPLICATIONS MODELS

In this paper, we construct our platform model based on a

standard IaaS cloud configuration. A variety of virtual

machine (VM) instances are deployed across physical servers

within a single datacenter. Specifically, we focus on a range of

VMs comparable to Amazon EC2 M5 instances. In particular,

we examine M5d instances, which come equipped with local

storage on NVMe SSD drives, unlike the standard M5

instances that rely on Amazon Elastic Block Storage (EBS) for

data storage.

Table I outlines the specifications of the available M5d

instances.

The number of virtual cores (vCPUs) within this instance series

spans from 2 to 96, maintaining a fixed memory allocation of

4GiB per core. Amazon typically deploys these instances on

nodes that feature Intel Xeon Platinum 8000 series processors.

A distinctive aspect of the M5d instances is the inclusion of fast

block-level storage on SSD drives, which is tied to the instance's

lifespan. Our objective in this study is to utilize this rapid

storage, shared among the vCPUs yet dedicated to them, for

storing intermediate files generated during workflow execution.

This approach aims to minimize data transfers across the

network for tasks allocated to the same virtual machine. Only

the input and output files of the workflow will be saved on an

external storage node.

The network bandwidth with other instances or the EBS is

contingent on the instance size. We assume that only the largest

instances capable of utilizing a full node—specifically those

with 48, 64, or 96 vCPUs—are guaranteed network bandwidths

of 10, 20, and 25 Gbps, respectively. For smaller instances,

ranging from 2 to 32 cores, we consider the available bandwidth

to be proportional to the number of cores, set at 208.33 Mbps

per core. All virtual machine instances initiated for executing a

specific workflow are interconnected via a single switch.

Regarding the M5d instances, the connection from a VM to the

EBS is established through a dedicated network link, which we

incorporate into our simulated infrastructure. For the network

connections between VMs, we presume that the bandwidth of

the dedicated connection between a VM and the EBS is

proportional to the number of cores for smaller VMs with up to

32 cores (i.e., 218.75 Mbps per core).

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4556 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

The scientific workflows we aim to schedule are modeled as

Directed Acyclic Graphs (DAGs), denoted as G = { 𝑇, ℇ},

where 𝑇 = {𝑡𝑖 | 𝑖 = 1,…, T} represents the set of vertices

corresponding to the computational tasks of the workflow, and

ℇ = {𝑒𝑖,𝑗 | (𝑖, 𝑗) ϵ {1,…,T} x {1,…,T}} is the set of edges

between these vertices, indicating either data dependencies (i.e.,

file transfers) or control flows between tasks. Our focus is on

workflows composed of a large number of sequential tasks that

run on a single core, as this mirrors real-world scientific

applications. Each task within the workflow has a predefined

(estimated) execution time, requires specific input files to

begin, and generates output files upon completion.

Our primary focus is on workflows composed of a substantial

number of sequential tasks, each of which executes on a single

core. This pattern is common in real-world scientific

applications. Each task within the workflow has a predefined or

estimated duration, requires a set of input files to begin its

execution, and produces a set of output files upon completion.

To represent the input and output files for a given task 𝑡𝑖, we

use the notation 𝐼𝑛𝑝𝑢𝑡𝑘
𝑖 for input files and 𝑂𝑢𝑡𝑝𝑢𝑡𝑘

𝑖 for output

files, where 𝑘 denotes the file index.

When an output file generated by one task 𝑡𝑖 is needed as an

input by another task 𝑡𝑗, this establishes a data dependency

between 𝑡𝑖 and 𝑡𝑗, represented by the 𝑒𝑖,𝑗. Furthermore, there

are input files that are not produced by any tasks within the

workflow; these are referred to as the workflow's entry files and

serve as the starting point for its execution.

Conversely, the output files that are not required by any

subsequent tasks in the workflow are referred to as the exit files.

To aid in the scheduling process, two important quantities are

defined for each task in the workflow. These metrics are

essential for making effective scheduling decisions: the Local

Input Volume (LIV) of task 𝑡𝑖 on machine 𝑣𝑚𝑘, denoted as

𝐿𝐼𝑉𝑘
𝑖 , represents the total size of the input files required by task

𝑡𝑖 that are locally available on 𝑣𝑚𝑘; similarly, the Local Output

Table I: Characteristics of the AWS M5d instances.

Model vCPU Memory

(GiB)

Instance Storage

(GiB)

Network Bandwidth

(Gbps)

EBS Bandwidth (Mbps)

m5d.large 2 8 1 x 75 NVMe SSD Up to 10 Up to 3,500

m5d.xlarge 4 16 1 x 150 NVMe SSD Up to 10 Up to 3,500

m5d.2xlarge 8 32 1 x 300 NVMe SSD Up to 10 Up to 3,500

m5d.4xlarge 16 64 2 x 300 NVMe SSD Up to 10 3,500

m5d.8xlarge 32 128 2 x 600 NVMe SSD 10 5,000

m5d.12xlarge 48 192 2 x 900 NVMe SSD 10 7,000

m5d.16xlarge 64 256 4 x 600 NVMe SSD 20 10,000

m5d.24xlarge 96 384 4 x 900 NVMe SSD 25 14,000

Volume (LOV) of 𝑡𝑖 on machine 𝑣𝑚𝑘, denoted as 𝐿𝑂𝑉𝑘
𝑖,

represents the cumulative size of the output files generated by

task 𝑡𝑖. These output files are needed by the successors of task

𝑡𝑖, and the successors are also scheduled on 𝑣𝑚𝑘. If a file is

used by multiple successors, its size is counted as many times

as there are successors. The LIV of an entry task and the LOV

of an exit task are set to zero by definition.

During workflow execution, all intermediate files those

generated by one task and consumed by another are stored

locally on the SSD storage of one or more machines. In

contrast, the entry and exit files of the workflow are stored on

the Elastic Block Store (EBS) service, which is accessible to

all machines involved in the workflow. The time required to

transfer a file from one machine to another includes the time

to read the file from the source machine's disk, the duration

of the network transfer, and the time to write the file to the

destination machine's disk.

IV. OPTIMIZING TASK PLANNING TO REDUCE

DATA TRANSFERS AND IMPROVE EXECUTION

The goal of this algorithm is to minimize the total execution

time (makespan), by accounting for both the parallel

execution of tasks and reducing data transfers across the

network. In other words, the study does not explicitly

consider data transfer time, as the algorithm is designed to

minimize network transfers. However, completely avoiding

these transfers is not always achievable due to the complexity

of task dependencies.

The algorithm begins by constructing a sorted scheduling list

that includes all the tasks in the workflow (lines 1-2). The

tasks are ordered based on their decreasing bottom level

values. The rank of a task 𝑡𝑖, denoted 𝑅𝑎𝑛𝑘𝑖, is the length of

the longest path from 𝑡𝑖 to the end of the workflow. This rank

includes the estimated duration of all tasks along this path,

including 𝑡𝑖. Following the approach in [], we also account

for the estimated data transfer costs when computing the rank

values of tasks. This prioritization ensures that the most

critical tasks are given higher priority, while also respecting

the dependencies between tasks. Next, the algorithm assigns

an initial mapping for each task 𝑡𝑖 in the set 𝑇 (lines 3-7). The

chosen virtual machine 𝑣𝑚 from the set 𝑉𝑀 is the one that:

(i) minimizes the start time of 𝑡𝑖 and (ii) maximizes the

volume of input files already stored locally for 𝑡𝑖. The

reasoning behind this is that when multiple virtual machines

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4557 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

can start 𝑡𝑖 at the same time, the algorithm favors the machine

that reduces data transfers over the network, thus improving

overall efficiency. Since all the virtual machine instances in

consideration are multi-core, scheduling a task 𝑡𝑖 on a

machine 𝑣𝑚 requires maintaining a local schedule within the

virtual machine. To optimize the use of the available cores,

each virtual machine is managed similarly to how a job and

resource manager would handle tasks. Keeping track of the

number of processors available on each virtual machine is

essential for determining the earliest possible start time for a

new task on that machine (i.e., 𝑠𝑡𝑘
𝑖). Once 𝑣𝑚 is selected for

the execution of 𝑡𝑖, the number of processors available on 𝑣𝑚

is updated accordingly (line 6).

The workflow is traversed level by level, from the bottom to

the top (lines 8-40). The reasoning behind this approach is

that during the initial placement, which proceeds from top to

bottom, only the data volume from a task's direct

predecessors is considered. It is not feasible to factor in the

locality of data required by a task's direct descendants since

their placements have not yet been determined. As a result,

this can lead to unnecessary data movements that could

otherwise be avoided.

We define level 0 as the topmost level of the Directed Acyclic

Graph (DAG), which contains all the entry tasks of the

workflow. For each subsequent task, its level is recursively

computed as the maximum level of its predecessors plus one.

Ultimately, we denote the total number of levels in the

workflow as L.

We begin by saving the current start time 𝑠𝑡𝑖
𝑐 and the current

mapping 𝑣𝑚𝑖 for each task 𝑡𝑖 in 𝑇𝑙 (lines 11-12). Next, we

calculate the local volume 𝐿𝑉𝑘
𝑖 for task 𝑡𝑖 on machine 𝑣𝑚𝑘

(lines 13-15). Afterward, we store the local volume for the

current mapping of 𝑡𝑖 (line 16) before canceling the current

mapping (line 17).

Canceling the mapping of all the tasks at a given level creates

idle processors of different machines. These processors can

be leveraged to enhance data locality by "migrating" certain

tasks from one machine to another. The conditions for

migrating a task 𝑡𝑖 from its previous mapping to a new

mapping on 𝑣𝑚𝑘 are twofold: it must improve data locality,

i.e., 𝐿𝑉𝑘
𝑖 ≥ 𝐿𝑉𝑖

𝑐 , and reduce the task's start time, i.e., 𝑠𝑡𝑘
𝑖 ≤

𝑠𝑡𝑖
𝑐 (lines 21-27).

At each step, the algorithm attempts to find a better mapping

for each task by prioritizing the machine that offers the largest

increase in local data volume. If the task can also start earlier

on this machine, it is selected for a new tentative mapping.

The first option (lines 28–31) is to execute this task and

update the processor count, provided that its ready time

matches its calculated start time (line 29), which does not

account for data transfer time.

The second option (lines 32–37) applies if the ready time of

a task is strictly earlier than its calculated start time (line 32).

In this case, if all predecessor tasks 𝑡𝑗, whose calculated

finish time coincides with the calculated start time of the

ready task 𝑡𝑖, have finished their execution (i.e., they have

released at least one processor) (line 33), then 𝑡𝑖 is executed,

and the count of available processors is updated (lines 34–

35). Note that the calculated finish and start times do not

factor in data transfer time but rather consider the data

transfer volumes.

Algorithm SMDT-ERU

1: Compute 𝑅𝑎𝑛𝑘𝑖 for each task 𝑡𝑖

2: Sort 𝑇 by decreasing 𝑅𝑎𝑛𝑘𝑖 values

3: for all 𝑡𝑖 ϵ 𝑇 do

4: 𝑣𝑚 ←{𝑣𝑚𝑘 ϵ 𝑉𝑀 | 𝑠𝑡𝑘
𝑖 is minimal and 𝐿𝐼𝑉𝑘

𝑖 is

maximal}

5: Map 𝑡𝑖 on 𝑣𝑚

6: Update 𝑝𝑟𝑜𝑐𝑘

7: endfor

8: for 𝑙 = L to 0 do

9: 𝑇𝑙 ← tasks in level 𝑙 sorted by decreasing 𝑅𝑎𝑛𝑘

values

10 : for all 𝑡𝑖 ϵ 𝑇𝑙 do

11 : 𝑠𝑡𝑖
𝑐 ← current start time of 𝑡𝑖

12 : 𝑣𝑚𝑖 ← current mapping of 𝑡𝑖

13 : for all 𝑣𝑚𝑘 ϵ 𝑉𝑀 do

14 : 𝐿𝑉𝑘
𝑖 ← 𝐿𝐼𝑉𝑘

𝑖 + 𝐿𝑂𝑉𝑘
𝑖

15 : endfor

16 : 𝐿𝑉𝑖
𝑐 ← current local volume of 𝑡𝑖

17 : Cancel the current mapping of 𝑡𝑖

18 : endfor

19 : for all 𝑡𝑖 ϵ 𝑇𝑙 do

20 : sort 𝑉𝑀 by decreasing 𝐿𝑉𝑘
𝑖 values

21 : while 𝐿𝑉𝑘
𝑖 ≥ 𝐿𝑉𝑖

𝑐 do

22 : if 𝑠𝑡𝑘
𝑖 ≤ 𝑠𝑡𝑖

𝑐 then

23 : Map 𝑡𝑖 on 𝑣𝑚𝑘

24 : Update 𝑝𝑟𝑜𝑐𝑘

25 : break

26 : endif

27 : endwhile

28 : if 𝑝𝑟𝑜𝑐𝑘 ≥ 0 then

29 : if 𝑟𝑡𝑘
𝑖 = 𝑠𝑡𝑘

𝑖 then

30 : Execute 𝑡𝑖 on 𝑣𝑚𝑘

31 Update 𝑝𝑟𝑜𝑐𝑘

32 : else if 𝑟𝑡𝑘
𝑖 ˂ 𝑠𝑡𝑘

𝑖 then

33 : if all tasks 𝑡𝑗 | 𝑓𝑡𝑘
𝑗
 = 𝑠𝑡𝑘

𝑗
 are computed

then

34 : Execute 𝑡𝑖 on 𝑣𝑚𝑘

35 : Update 𝑝𝑟𝑜𝑐𝑘

36 : endif

37 : endif

38 : endif

39 : endfor

40 : endfor

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4558 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

Table II : Some characteristics of used workflows

Workflow tasks input files size

(GB)

total files size

(GB)

CyberShake 1000 150.76 400.39

Epigenomics 997 1217.72 1230.93

Figure 1: Structure of the used workflows.

V. RESULTS AND DISCUSSION

To evaluate our approach, we used two data-intensive parallel

applications (scientific workflows) from the Pegasus Gallery

[24]. These workflows are designed to simulate real-world

scientific applications. The key characteristics of these

applications are summarized in Table II and their structure

depicted in Figure 1. Epigenomics: is a data processing

pipeline designed to automate the execution of various

genome sequencing operations. Cybershake: is an application

developed by the Southern California Earthquake Center

aimed at characterizing earthquake hazards. Our simulations

were carried out using WRENCH [25], [26], [27] version 2.3

and SimGrid [28] version 3.36.

To generate the various platforms and prevent resource

wastage specifically, to avoid leasing resources that will

remain unused the number of tasks that can be executed in

parallel for each workflow is assessed. This involves

oversizing the platform, meaning it is provisioned with as

many cores as there are tasks in the workflow. In this study,

both workflows contain 1,000 tasks, leading to the

consideration of a platform with 1,000 cores. This approach

enabled us to identify the total number of cores that could be

utilized concurrently for each workflow. For CyberShake,

374 cores are utilized in parallel, while for Epigenomics, 246

cores are employed concurrently. This preliminary analysis

will inform the next section, where we will establish the limits

of platforms to be used for each workflow in our experiments.

This evaluation begins by analyzing the effect of virtual

machine size on the execution time of scientific workflows.

For each workflow, we examine infrastructures where we

incrementally increase the maximum number of cores per

VM, ranging from 2 to 96 cores. Thus, for a given total

number of cores to be utilized, we create platforms with 2

cores per VM, 4 cores per VM, and so on, up to 96 cores per

VM.

As illustrated in Figures 2 and 3, platforms with 2 cores per

VM exhibit poor execution times compared to those with 32

cores per VM, and the latter also perform worse than

platforms with 96 cores per VM. Increasing the total number

of cores per VM results in better execution times.

Consequently, this study advocates for the use of larger VMs

(i.e., VMs with multiple cores), as they can execute several

tasks in parallel, significantly reducing the makespan.

In Figures 2 and 3, the term max_ft represents the theoretical

minimum bound, assuming no communication occurs during

workflow execution. The execution times obtained on

platforms with large VMs (i.e., those with 96 cores) approach

this theoretical minimum.

Distinct behaviors are observed among the three workflows

considered. First, the total number of cores used has minimal

impact on execution time for the CyberShake application,

while the Epigenomics workflow shows a plateau in

execution time starting from the use of two total cores.

Second, although execution time decreases as the size of the

virtual machine instances increases, the improvement

becomes marginal for sizes beyond 32 cores. Notably, the

CyberShake workflow, which generates significantly more

intermediate data than the other two

Figure 2: Evolution of the Makespan of the CyberShake

Workflow with Variation of the Total Number of Cores per

VM.

Figure 3: Evolution of the Makespan of the Epigenomics

Workflow with Variation of the Total Number of Cores

per VM.

workflows, performs worse when relying on the local storage

of smaller instances (i.e., those with up to eight cores)

compared to a configuration with one core per VM where all

intermediate data is stored on the EBS service. This occurs

because utilizing too many small VMs on a single host (i.e.,

up to 48 instances with two cores each) increases the volume

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4559 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

of data transfers between instances and causes network

contention. In contrast, in the baseline configuration, each

VM benefits from a dedicated network connection to the

shared storage service.The main objective of this study is to

minimize the execution time of an application. To achieve

this goal, the main contribution of this paper is the reduction

of files transferred during the execution of the application,

which has a considerable impact on the execution time. To

evaluate the performance of this algorithm, the proposed

approach is compared to HEFT [29] and Max-Min [30], two

very popular heuristics for parallel application scheduling.

HEFT andMax-Min have been adapted to IaaS cloud

resources and the simulation environment. The simulation

results show that the proposed approach offers good results

compared to Max-Min and often similar results to HEFT.

In the results of Figures 4 and 5, we use platforms where the

total number of cores used ranges from 2 to 374 cores for

CyberShake, and from 2 to 246 cores for Epigenomics, in

increments of 2.

Large VMs are preferred for each platform as they allow

multiple tasks to be executed in parallel. Juve et al. [31]

demonstrated that each task in a real scientific workflow is a

single-core activity, meaning it can only run on a single

computing core, rather than utilizing all the cores of a VM.

This study follows the same principle. Therefore, a user

wishing to run a parallel application in the cloud needs to rent

a total number of cores, and the proposed approach provides

a platform that minimizes the application's completion time.

For example, if a user wants to utilize 100 cores in total, the

platform will consist of one VM with 96 cores and another

with 4 cores. For a total of 200 cores, the platform will include

three VMs: two with 96 cores and one with 8 cores, and so

on.

When a platform contains more virtual machines (VMs),

more files will need to be transferred across the network.

While large VMs are prioritized for application execution, the

key reason behind this choice is to maximize bandwidth

usage for these machines, as summarized in Table I. With the

HEFT and Max-Min algorithms, an increase in the number of

VMs on the platform leads to a higher volume of file transfers

over the network. However, the proposed approach reduces

file transfers at two levels for each task: reducing transfers

from parent tasks and reducing transfers to child tasks. This

strategy allows us to achieve better results compared to HEFT

and Max-Min, as shown in Figures 4 and 5.

These experiments demonstrate that our approach yields

better results, as summarized by the following improvements.

The CyberShake workflow achieves a 74.06% reduction in

makespan compared to HEFT and 90.37% reduction in

makespan compared to Max-Min (c.f. Figure 4). For the

Epigenomics workflow, our approach achieves a 2.85%

improvement in makespan compared to the HEFT algorithm,

and 12.99% compared to the Max-Min algorithm (c.f. Figure

5). This relatively modest gain can be explained by the

limited amount of data processed during the execution of the

Figure 4: Evaluation Results for the CyberShake

Workflow.

Figure 5: Evaluation Results for the Epigenomics

Workflow.

workflow, amounting to 13.21 GB (c.f. Table II), calculated

as the difference between the total number of files and the

input files. In this context, the makespan is not significantly

impacted by data transfer since the data volumes are small,

which limits the effect of our optimization on this particular

aspect.

However, for the CyberShake workflow, the more significant

improvement in makespan is due to the notable reduction in

data transferred over the network. During the execution of the

CyberShake workflow, 249.63 GB of data are processed (c.f.

Table II). This large volume can cause a noticeable

degradation in the total execution time, primarily due to data

transfers between tasks. These transfers act as a bottleneck,

slowing down the workflow's execution.

Our approach stands out by employing a rigorous task

scheduling strategy and local storage for preserving the

output data of each task. This minimizes data transfers across

the network, leading to a substantial reduction in makespan,

especially in scenarios where handling large volumes of data

is a key factor.

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4560 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

VI. CONCLUSION AND FUTURE WORK

Infrastructure as a Service (IaaS) clouds now enable scientists

to execute their data-intensive workflows on infrastructures

tailored to the computing and storage requirements of these

applications. Determining the optimal set of virtual machine

instances to form these infrastructures is a complex task,

often handled by Workflow Management Systems (WMS). A

critical factor in achieving high performance is the ability to

effectively leverage the specific characteristics of virtual

machine instances.

In this paper, we first demonstrated the benefits of using

multi-core machines, as increasing the number of cores

allows multiple tasks to be executed on the same machine,

with the bandwidth connecting the machine to the switch

being proportional to the number of cores. We then proposed

scheduling algorithms that minimize the makespan by

reducing data transfers between dependent tasks over the

network. Finally, the experimental results showed that our

proposed approach yields better results than both HEFT and

Max-Min, two of the most effective list-scheduling

algorithms.

As part of our future work, we plan to compare the simulated

executions with actual runs on the AWS computing cloud

using M5d instances to validate the impact of the proposed

algorithms. Additionally, we aim to explore the multi-

objective aspect of the scheduling problem, allowing users to

prioritize either shorter execution times or lower costs. We

will propose a complementary approach where one of the

objectives is fixed—either a predefined budget or a set

deadline.

REFERENCES

1. X. Meng et L. Golab, « Parallel Scheduling of Data-

Intensive Tasks », in Euro-Par 2020: Parallel

Processing, M. Malawski et K. Rzadca, Éd., Cham:

Springer International Publishing, 2020, p. 117‑133.

doi: 10.1007/978-3-030-57675-2_8.

2. D. C. M. de Oliveira, J. Liu, et E. Pacitti, Data-

Intensive Workflow Management. Springer Nature,

2022.

3. S. Pellegrini, F. Giacomini, et A. Ghiselli, « A

Practical Approach for a Workflow Management

System », in Grid Middleware and Services:

Challenges and Solutions, D. Talia, R. Yahyapour,

et W. Ziegler, Éd., Boston, MA: Springer US, 2008,

p. 279‑287. doi: 10.1007/978-0-387-78446-5_18.

4. « Calcul — Types d’instances Amazon EC2 —

AWS », Amazon Web Services, Inc. Consulté le: 16

octobre 2024. [En ligne]. Disponible sur:

https://aws.amazon.com/fr/ec2/instance-types/

5. M. S. R. Krishna et S. Mangalampalli, « A

Systematic Review on Various Task Scheduling

Algorithms in Cloud Computing », EAI Endorsed

Trans. Internet Things, vol. 10, 2024,

doi: 10.4108/eetiot.4548.

6. L. Yang, Y. Xia, X. Zhang, L. Ye, et Y. Zhan,

« Classification-Based Diverse Workflows

Scheduling in Clouds », IEEE Trans. Autom. Sci.

Eng., vol. 21, no 1, p. 630‑641, janv. 2024,

doi: 10.1109/TASE.2022.3217666.

7. Z. Zhu et X. Tang, « Deadline-constrained

workflow scheduling in IaaS clouds with multi-

resource packing », Future Gener. Comput. Syst.,

vol. 101, p. 880‑893, déc. 2019,

doi: 10.1016/j.future.2019.07.043.

8. D. Alsadie et M. Alsulami, « Enhancing Workflow

Efficiency: A Modified Firefly Algorithm for

Hybrid Cloud-Edge Environments », 8 août 2024,

Research Square. doi: 10.21203/rs.3.rs-4623299/v1.

9. S. Murad et al., « OPTIMIZED MIN-MIN TASK

SCHEDULING ALGORITHM FOR SCIENTIFIC

WORKFLOWS IN A CLOUD ENVIRONMENT »,

J. Theor. Appl. Inf. Technol., vol. 100, p. 480‑506,

janv. 2022.

10. A. Patil et B. Thankachan, « Review on a

comparative study of various task scheduling

algorithm in cloud computing environment », Turk.

J. Comput. Math. Educ. TURCOMAT, vol. 11, no 3,

p. 1396‑1401, 2020.

11. O. Sukhoroslov, « Scheduling of Workflows

with Task Resource Requirements in Cluster

Environments », in Parallel Computing

Technologies, V. Malyshkin, Éd., Cham: Springer

Nature Switzerland, 2023, p. 177‑196.

doi: 10.1007/978-3-031-41673-6_14.

12. R. Akraminejad, N. Khaledian, A. Nazari, et M.

Voelp, « A multi-objective crow search algorithm

for optimizing makespan and costs in scientific

cloud workflows (CSAMOMC) », Computing, vol.

106, no 6, p. 1777‑1793, juin 2024,

doi: 10.1007/s00607-024-01263-4.

13. S. Bansal et H. Aggarwal, « A multiobjective

optimization of task workflow scheduling using

hybridization of PSO and WOA algorithms in cloud-

fog computing », Clust. Comput., vol. 27, no 8, p.

10921‑10952, nov. 2024, doi: 10.1007/s10586-024-

04522-3.

14. M. Raeisi-Varzaneh, O. Dakkak, Y. Fazea, et M. G.

Kaosar, « Advanced cost-aware Max–Min

workflow tasks allocation and scheduling in cloud

computing systems », Clust. Comput., vol. 27, no 9,

p. 13407‑13419, déc. 2024, doi: 10.1007/s10586-

024-04594-1.

15. Z. Sun, B. Zhang, C. Gu, R. Xie, B. Qian, et H.

Huang, « ET2FA: A Hybrid Heuristic Algorithm for

Deadline-Constrained Workflow Scheduling in

Cloud », IEEE Trans. Serv. Comput., vol. 16, no 3,

p. 1807‑1821, mai 2023,

“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS

Platforms”

4561 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024

doi: 10.1109/TSC.2022.3196620.

16. S. Mangalampalli, G. R. Karri, M. Kumar, O. I.

Khalaf, C. A. T. Romero, et G. A. Sahib,

« DRLBTSA: Deep reinforcement learning based

task-scheduling algorithm in cloud computing »,

Multimed. Tools Appl., vol. 83, no 3, p. 8359‑8387,

janv. 2024, doi: 10.1007/s11042-023-16008-2.

17. S. Kumar et S. Chander, « Comparative Analysis Of

Task Scheduling Algorithms In Cloud Environment

In Terms of Their Future Prospective And Risk »,

Webology, vol. 18, no 5, 2021, Consulté le: 15

octobre 2024. [En ligne]. Disponible sur:

https://www.webology.org/data-

cms/articles/20220212054937pmwebology%2018

%20(5)%20-%2059%20pdf.pdf

18. P. Sadotra, P. Chouksey, M. Chopra, R. Koser, et R.

Rawat, « Research Review on Task Scheduling

Algorithm for Green Cloud Computing », in

Scalable Modeling and Efficient Management of IoT

Applications, IGI Global, 2025, p. 137‑152.

doi: 10.4018/979-8-3693-1686-3.ch007.

19. A. Taghinezhad-Niar, S. Pashazadeh, et J. Taheri,

« QoS-aware online scheduling of multiple

workflows under task execution time uncertainty in

clouds », Clust. Comput., vol. 25, no 6, p.

3767‑3784, déc. 2022, doi: 10.1007/s10586-022-

03600-8.

20. Z. Sun, C. Gu, H. Huang, et H. Zhang, « T2FA: A

Heuristic Algorithm for Deadline-Constrained

Workflow Scheduling in Cloud with Multicore

Resource », in 2021 IEEE 14th International

Conference on Cloud Computing (CLOUD), sept.

2021, p. 345‑354.

doi: 10.1109/CLOUD53861.2021.00048.

21. S. M. F. D. S. Mustapha et P. Gupta, « DBSCAN

inspired task scheduling algorithm for cloud

infrastructure », Internet Things Cyber-Phys. Syst.,

vol. 4, p. 32‑39, janv. 2024,

doi: 10.1016/j.iotcps.2023.07.001.

22. R. Sandhu, M. Faiz, H. Kaur, A. Srivastava, et V.

Narayan, « Enhancement in performance of cloud

computing task scheduling using optimization

strategies », Clust. Comput., vol. 27, no 5, p.

6265‑6288, août 2024,

doi: 10.1007/s10586-023-04254-w.

23. H. Mikram, S. El Kafhali, et Y. Saadi, « HEPGA: A

new effective hybrid algorithm for scientific

workflow scheduling in cloud computing

environment », Simul. Model. Pract. Theory, vol.

130, p. 102864, janv. 2024,

doi: 10.1016/j.simpat.2023.102864.

24. « https://pegasus.isi.edu/workflow_gallery/ »,

Pegasus WMS. Consulté le: 16 octobre 2024. [En

ligne]. Disponible sur:

https://pegasus.isi.edu/workflow_gallery/

25. H. Casanova et al., « Developing accurate and

scalable simulators of production workflow

management systems with WRENCH », Future

Gener. Comput. Syst., vol. 112, p. 162‑175, nov.

2020, doi: 10.1016/j.future.2020.05.030.

26. H. Casanova, R. Tanaka, W. Koch, et R. Ferreira Da

Silva, « Teaching parallel and distributed computing

concepts in simulation with WRENCH », J. Parallel

Distrib. Comput., vol. 156, p. 53‑63, oct. 2021, doi:

10.1016/j.jpdc.2021.05.009.

27. H. Casanova, S. Pandey, J. Oeth, R. Tanaka, F.

Suter, et R. Ferreira Da Silva, « WRENCH: A

Framework for Simulating Workflow Management

Systems », in 2018 IEEE/ACM Workflows in

Support of Large-Scale Science (WORKS), Dallas,

TX, USA: IEEE, nov. 2018, p. 74‑85.

doi: 10.1109/WORKS.2018.00013.

28. « SimGrid Home ». Consulté le: 16 octobre 2024.

[En ligne]. Disponible sur: https://simgrid.org/

29. H. Topcuoglu, S. Hariri, et Min-You Wu,

« Performance-effective and low-complexity task

scheduling for heterogeneous computing », IEEE

Trans. Parallel Distrib. Syst., vol. 13, no 3,

p. 260‑274, mars 2002, doi: 10.1109/71.993206.

30. « Advanced cost-aware Max–Min workflow tasks

allocation and scheduling in cloud computing

systems | Cluster Computing ». Consulté le: 18

octobre 2024. [En ligne]. Disponible sur:

https://link.springer.com/article/10.1007/s10586-

024-04594-1

31. G. Juve, A. Chervenak, E. Deelman, S. Bharathi, G.

Mehta, et K. Vahi, « Characterizing and profiling

scientific workflows », Future Gener. Comput.

Syst., vol. 29, no 3, p. 682‑692, mars 2013,

doi: 10.1016/j.future.2012.08.015.

