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Cloud IaaS platforms readily provide access to homogeneous multi-core machines, whether 

they are physical ("bare metal") or virtual machines. Each of these machines can be equipped 

with high-performance SSD disks, enabling the distribution of workflow-generated files 

across multiple machines, which helps minimize the overhead associated with data transfers. 

In this paper, we propose a scheduling algorithm called SMDT-ERU (Scheduling for 

Minimizing Data Transfer - Enhancing Resource Utilization), designed to reduce the 

makespan of data-intensive workflows by minimizing data transfers between dependent 

tasks over the network. Intermediate files generated by tasks are stored locally on the disk 

of the machine where the tasks are executed. 

Through experimentation, we confirm that increasing the number of cores per machine 

reduces the additional costs caused by network data transfers. Real-world workflow 

experiments demonstrate the advantages of the proposed algorithm. Our data-driven 

scheduling approach significantly reduces execution time and the volume of data transferred 

over the network, outperforming one of the leading state-of-the-art algorithms, which we 

have adapted to fit our assumptions. 
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I. INTRODUCTION 

Data-intensive parallel applications (scientific workflows), 

represented as Directed Acyclic Graphs (DAGs) [1], [2], 

originate from various fields such as biology, astronomy, and 

physics. They are characterized by their complex structure and 

high demands for computing and storage resources. The 

transition from grid environments to cloud computing has 

consistently shaped the execution of scientific workflows, which 

now leverage virtual, dynamic, and scalable resources. These 

workflows allow researchers to express the necessary steps to 

transform vast amounts of data generated by scientific 

experiments into meaningful scientific results. Typically, the 

execution of these data-intensive applications, composed of 

hundreds of computational tasks, is managed by a Workflow 

Management System (WMS) [3], which abstracts the 

complexities of resource selection, data management, and 

computation scheduling for the end user. 

However, with the emergence of major cloud service 

providers such as Amazon, Google, and Microsoft, 

Infrastructure as a Service (IaaS) has become a viable alternative 

to traditional clusters and grids. IaaS combines the advantages 

of these systems by offering virtually unlimited resources with 

flexible accessibility. This capability allows WMS to design 

computing and storage infrastructures tailored to specific 

workflows, leveraging a targeted set of virtual machine 

instances. 

One notable advantage of scientific workflows is their 

independence from the specific characteristics of the underlying 

infrastructure. This flexibility enables users to execute the same 

workflow on different infrastructures without modifying their 

applications. However, this also leads to the common practice of 

managing task dependencies through file transfers. Intermediate 

data produced by a task is typically written to disk and then 

transferred over the network to another storage device for 

consumption by another task. 

https://doi.org/10.47191/ijmcr/v12i11.01


“Efficient Workflow Scheduling for Minimizing Data Transfers and Enhancing Resource Utilization in Cloud IaaS 

Platforms” 

4554 Jean Edgard GNIMASSOUN 1, IJMCR Volume 12 Issue 11 November 2024 
 

While existing algorithms address the scheduling of 

workflows on IaaS cloud infrastructures, many do not account 

for the complexities associated with executing tasks on multi-

core virtual machines. This oversight can lead to unnecessary 

data transfers, adversely affecting overall execution time. Given 

that Amazon EC2 allows the deployment of virtual machines 

with up to ninety-six parallel computing cores [4], our work aims 

to leverage this capability. By placing dependent tasks on the 

same virtual machine, we can effectively reduce communication 

time, which is crucial for improving workflow efficiency. 

The challenge of mapping workflow tasks in a cloud 

computing environment remains a subject of extensive research, 

with several heuristics and metaheuristics proposed to optimize 

execution time and resource utilization. However, many existing 

approaches overlook the importance of data locality, focusing 

primarily on data produced by predecessor tasks. By considering 

both the execution time of individual tasks and the data transfer 

time between dependent tasks, our research aims to enhance 

workflow execution. The central question addressed in this paper 

is how to effectively map the tasks of a data-intensive 

application while minimizing file transfers over the network to 

achieve better execution times. 

In this paper, we propose an innovative approach that 

leverages the unique characteristics of Amazon Web Services 

virtual machine instances, specifically their large number of 

cores and dedicated storage space on fast SSD drives. Our goal 

is to improve data locality, thereby reducing data transfers over 

the network during workflow execution, which should have a 

direct and beneficial impact on overall execution time. 

 

II. RELATED WORKS  

Cloud computing has significantly changed the way scientific 

and industrial workflows are executed, providing scalable and 

elastic resources to handle complex tasks. However, optimizing 

the scheduling of workflows in these environments remains a 

major challenge, especially when it comes to minimizing 

conflicting objectives such as makespan and execution costs 

while adhering to quality of service (QoS) constraints. Various 

algorithms and approaches have been developed to address 

these requirements, utilizing multi-objective methods, 

heuristics, and artificial intelligence (AI). 

A systematic review of task scheduling algorithms in cloud 

computing was conducted by Krishna and Mangalampalli [5], 

highlighting the different methods used to manage workflow 

complexity. The study classified the algorithms based on their 

ability to balance workloads, optimize resources, and handle 

time constraints. This in-depth review provides a solid 

foundation for understanding how both classical and advanced 

algorithms meet the increasingly complex needs of cloud 

infrastructures. Yang et al. [6], in their work on classification-

based workflow scheduling in cloud environments, proposed an 

approach that considers the diversity of workflows. Their 

method optimizes scheduling by classifying tasks based on their 

characteristics, thereby offering better resource management in 

dynamic environments. This approach is particularly effective 

in multi-tier environments where tasks vary significantly in 

terms of complexity and resource requirements. 

Resource optimization in Infrastructure as a Service (IaaS) 

environments is crucial to improving overall system 

performance. Zhu and Tang [7] proposed a workflow 

scheduling approach for deadline-constrained tasks in IaaS 

clouds, using multi-resource packing. Their method aims to 

maximize resource utilization while ensuring that task deadlines 

are met, highlighting the challenges of managing heterogeneous 

resources in distributed environments. Other studies have 

focused on enhancing existing algorithms to adapt to hybrid 

cloud-edge environments. For instance, Alsadie and Alsulami 

[8] proposed a modified Firefly algorithm to improve workflow 

efficiency in hybrid cloud-edge environments. This solution 

reduces latency and improves task distribution by leveraging 

both local and remote computing resources. 

Improving classical scheduling algorithms remains an area of 

interest for many researchers. Murad et al. [9] presented an 

optimized version of the Min-Min algorithm for scientific 

workflow scheduling in the cloud, focusing on minimizing task 

waiting times. Their approach offers a notable reduction in 

workflow execution times, particularly in compute-intensive 

environments. Additionally, Patil and Thankachan [10] 

conducted a comparative study of various scheduling 

algorithms in cloud environments, highlighting the strengths 

and weaknesses of each method based on the size and 

complexity of workflows. 

Sukhoroslov [11] studied the scheduling of workflows with 

specific resource requirements in cluster environments. His 

work emphasizes the importance of matching the resource 

needs of tasks with the capabilities of available compute nodes. 

This approach improves task distribution and optimizes 

resource usage in high-performance computing (HPC) 

environments. 

Multi-objective optimization is one of the most studied 

approaches for workflow scheduling, as it allows for 

simultaneous consideration of multiple criteria. Akraminejad et 

al. [12] proposed a crow search algorithm to optimize both 

makespan and costs in scientific cloud workflows. Similarly, 

Bansal and Aggarwal [13] explored the hybridization of PSO 

and WOA algorithms in cloud-fog environments to improve 

scheduling in a multi-objective framework. These works clearly 

demonstrate the importance of multi-objective optimization in 

the effective allocation of resources in large-scale cloud 

environments. Raeisi-Varzaneh et al. [14] also contributed to 

this research by introducing an improved Max–Min algorithm 

focused on cost reduction during task allocation in workflows, 

further emphasizing that resource management is crucial for 

ensuring efficient execution in large-scale cloud settings. 

Alongside multi-objective approaches, heuristic algorithms 

remain widely used due to their ability to quickly provide 

approximate solutions in complex environments. Sun et al. [15] 

introduced a hybrid algorithm, ET2FA, which combines 
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heuristic techniques with resource adjustment methods to 

optimize scheduling for deadline-constrained workflows. This 

approach significantly reduced task execution times. 

Complementarily, Mangalampalli et al. [16] proposed a deep 

reinforcement learning-based scheduling algorithm 

(DRLBTSA), demonstrating that reinforcement learning 

algorithms can learn from execution data to optimize task 

allocation in the cloud. These works highlight the growing 

integration of AI and machine learning techniques in workflow 

optimization. 

Comparative studies of the performance of different 

scheduling algorithms have also highlighted the diversity of 

existing solutions and their respective advantages. Kumar and 

Chander [17] conducted a comparative analysis of major task 

scheduling algorithms in cloud environments, emphasizing that 

hybrid methods, which combine multiple techniques, often 

yield the best performance. Concurrently, Sadotra et al. [18] 

focused on scheduling in the context of green computing, 

demonstrating that scheduling algorithms can be optimized to 

reduce the energy footprint of cloud systems, which has become 

an increasing concern in light of environmental considerations. 

Another critical aspect of workflow scheduling in the cloud 

is resource management under constraints. Cloud environments 

are often characterized by limited resource availability, and task 

execution times can be uncertain. Taghinezhad-Niar et al. [19] 

addressed this issue by proposing an approach that takes into 

account uncertainties in task execution times while ensuring 

acceptable QoS levels. This approach allows for better resource 

management in unpredictable environments. Additionally, Sun 

et al. [20] introduced a resource optimization method called 

multi-resource packing, which maximizes resource utilization 

while adhering to time constraints. These works demonstrate 

that fine-grained resource management is essential for effective 

workflow planning. 

Finally, the integration of artificial intelligence into 

workflow management is becoming increasingly important. 

Mustapha and Gupta [21] introduced a DBSCAN-inspired task 

scheduling algorithm for cloud infrastructures, illustrating how 

clustering techniques can enhance resource allocation. This 

approach utilizes the density of data clusters to optimize task 

distribution and avoid resource overloads. These new AI-based 

methods pave the way for more dynamic and adaptive solutions 

for scheduling in complex cloud environments. Heuristic 

algorithms and AI-based approaches continue to play a key role 

in optimizing workflow performance. Sandhu et al. [22] 

explored optimization strategies to enhance task scheduling 

performance in cloud computing. Their research demonstrated 

that integrating heuristics into scheduling processes led to 

significant improvements in response times and processing 

costs. Similarly, Mikram et al. [23] proposed a new hybrid 

algorithm, HEPGA, which combines evolutionary algorithms 

with knowledge-based scheduling approaches to solve the 

scheduling problem in cloud environments. Their approach has 

shown increased efficiency in resource management and the 

optimization of complex scientific workflows. 

In summary, optimizing workflow scheduling in cloud 

environments continues to prompt intensive research, with 

significant contributions in the fields of heuristic algorithms, 

multi-objective approaches, and AI-based methods. Challenges 

related to resource management, cost minimization, and 

makespan improvement remain critical, and hybrid or AI-based 

solutions have proven promising in addressing these issues in 

ever-evolving cloud environments. 

 

III. PLATFORM AND APPLICATIONS MODELS 

In this paper, we construct our platform model based on a 

standard IaaS cloud configuration. A variety of virtual 

machine (VM) instances are deployed across physical servers 

within a single datacenter. Specifically, we focus on a range of 

VMs comparable to Amazon EC2 M5 instances. In particular, 

we examine M5d instances, which come equipped with local 

storage on NVMe SSD drives, unlike the standard M5 

instances that rely on Amazon Elastic Block Storage (EBS) for 

data storage. 

Table I outlines the specifications of the available M5d 

instances. 

The number of virtual cores (vCPUs) within this instance series 

spans from 2 to 96, maintaining a fixed memory allocation of 

4GiB per core. Amazon typically deploys these instances on 

nodes that feature Intel Xeon Platinum 8000 series processors. 

A distinctive aspect of the M5d instances is the inclusion of fast 

block-level storage on SSD drives, which is tied to the instance's 

lifespan. Our objective in this study is to utilize this rapid 

storage, shared among the vCPUs yet dedicated to them, for 

storing intermediate files generated during workflow execution. 

This approach aims to minimize data transfers across the 

network for tasks allocated to the same virtual machine. Only 

the input and output files of the workflow will be saved on an 

external storage node. 

The network bandwidth with other instances or the EBS is 

contingent on the instance size. We assume that only the largest 

instances capable of utilizing a full node—specifically those 

with 48, 64, or 96 vCPUs—are guaranteed network bandwidths 

of 10, 20, and 25 Gbps, respectively. For smaller instances, 

ranging from 2 to 32 cores, we consider the available bandwidth 

to be proportional to the number of cores, set at 208.33 Mbps 

per core. All virtual machine instances initiated for executing a 

specific workflow are interconnected via a single switch. 

Regarding the M5d instances, the connection from a VM to the 

EBS is established through a dedicated network link, which we 

incorporate into our simulated infrastructure. For the network 

connections between VMs, we presume that the bandwidth of 

the dedicated connection between a VM and the EBS is 

proportional to the number of cores for smaller VMs with up to 

32 cores (i.e., 218.75 Mbps per core). 
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The scientific workflows we aim to schedule are modeled as 

Directed Acyclic Graphs (DAGs), denoted as G = { 𝑇, ℇ}, 

where 𝑇 = {𝑡𝑖 | 𝑖 = 1,…, T} represents the set of vertices 

corresponding to the computational tasks of the workflow, and 

ℇ = {𝑒𝑖,𝑗 | (𝑖, 𝑗) ϵ {1,…,T} x {1,…,T}} is the set of edges 

between these vertices, indicating either data dependencies (i.e., 

file transfers) or control flows between tasks. Our focus is on 

workflows composed of a large number of sequential tasks that 

run on a single core, as this mirrors real-world scientific 

applications. Each task within the workflow has a predefined 

(estimated) execution time, requires specific input files to 

begin, and generates output files upon completion. 

Our primary focus is on workflows composed of a substantial 

number of sequential tasks, each of which executes on a single 

core. This pattern is common in real-world scientific 

applications. Each task within the workflow has a predefined or 

estimated duration, requires a set of input files to begin its 

execution, and produces a set of output files upon completion. 

To represent the input and output files for a given task 𝑡𝑖, we 

use the notation 𝐼𝑛𝑝𝑢𝑡𝑘
𝑖  for input files and 𝑂𝑢𝑡𝑝𝑢𝑡𝑘

𝑖  for output 

files, where 𝑘 denotes the file index. 

When an output file generated by one task 𝑡𝑖 is needed as an 

input by another task 𝑡𝑗, this establishes a data dependency 

between 𝑡𝑖 and 𝑡𝑗, represented by the 𝑒𝑖,𝑗. Furthermore, there 

are input files that are not produced by any tasks within the 

workflow; these are referred to as the workflow's entry files and 

serve as the starting point for its execution. 

Conversely, the output files that are not required by any 

subsequent tasks in the workflow are referred to as the exit files. 

To aid in the scheduling process, two important quantities are 

defined for each task in the workflow. These metrics are 

essential for making effective scheduling decisions: the Local 

Input Volume (LIV) of task 𝑡𝑖 on machine 𝑣𝑚𝑘, denoted as 

𝐿𝐼𝑉𝑘
𝑖 , represents the total size of the input files required by task 

𝑡𝑖 that are locally available on 𝑣𝑚𝑘; similarly, the Local Output  

 

 

Table I: Characteristics of the AWS M5d instances. 

Model vCPU Memory 

(GiB) 

Instance Storage 

(GiB) 

Network Bandwidth 

(Gbps) 

EBS Bandwidth (Mbps) 

m5d.large 2 8 1 x 75 NVMe SSD Up to 10 Up to 3,500 

m5d.xlarge 4 16 1 x 150 NVMe SSD Up to 10 Up to 3,500 

m5d.2xlarge 8 32 1 x 300 NVMe SSD Up to 10 Up to 3,500 

m5d.4xlarge 16 64 2 x 300 NVMe SSD Up to 10 3,500 

m5d.8xlarge 32 128 2 x 600 NVMe SSD 10 5,000 

m5d.12xlarge 48 192 2 x 900 NVMe SSD 10 7,000 

m5d.16xlarge 64 256 4 x 600 NVMe SSD 20 10,000 

m5d.24xlarge 96 384 4 x 900 NVMe SSD 25 14,000 

 

Volume (LOV) of 𝑡𝑖 on machine 𝑣𝑚𝑘, denoted as 𝐿𝑂𝑉𝑘
𝑖, 

represents the cumulative size of the output files generated by 

task 𝑡𝑖. These output files are needed by the successors of task 

𝑡𝑖, and the successors are also scheduled on 𝑣𝑚𝑘. If a file is 

used by multiple successors, its size is counted as many times 

as there are successors. The LIV of an entry task and the LOV 

of an exit task are set to zero by definition. 

During workflow execution, all intermediate files those 

generated by one task and consumed by another are stored 

locally on the SSD storage of one or more machines. In 

contrast, the entry and exit files of the workflow are stored on 

the Elastic Block Store (EBS) service, which is accessible to 

all machines involved in the workflow. The time required to 

transfer a file from one machine to another includes the time 

to read the file from the source machine's disk, the duration 

of the network transfer, and the time to write the file to the 

destination machine's disk. 

 

IV. OPTIMIZING TASK PLANNING TO REDUCE 

DATA TRANSFERS AND IMPROVE EXECUTION 

The goal of this algorithm is to minimize the total execution 

time (makespan), by accounting for both the parallel 

execution of tasks and reducing data transfers across the 

network. In other words, the study does not explicitly 

consider data transfer time, as the algorithm is designed to 

minimize network transfers. However, completely avoiding 

these transfers is not always achievable due to the complexity 

of task dependencies. 

The algorithm begins by constructing a sorted scheduling list 

that includes all the tasks in the workflow (lines 1-2). The 

tasks are ordered based on their decreasing bottom level 

values. The rank of a task 𝑡𝑖, denoted 𝑅𝑎𝑛𝑘𝑖, is the length of 

the longest path from 𝑡𝑖 to the end of the workflow. This rank 

includes the estimated duration of all tasks along this path, 

including 𝑡𝑖. Following the approach in [], we also account 

for the estimated data transfer costs when computing the rank 

values of tasks. This prioritization ensures that the most 

critical tasks are given higher priority, while also respecting 

the dependencies between tasks. Next, the algorithm assigns 

an initial mapping for each task 𝑡𝑖 in the set 𝑇 (lines 3-7). The 

chosen virtual machine 𝑣𝑚 from the set 𝑉𝑀 is the one that: 

(i) minimizes the start time of 𝑡𝑖 and (ii) maximizes the 

volume of input files already stored locally for 𝑡𝑖. The 

reasoning behind this is that when multiple virtual machines 
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can start 𝑡𝑖 at the same time, the algorithm favors the machine 

that reduces data transfers over the network, thus improving 

overall efficiency. Since all the virtual machine instances in 

consideration are multi-core, scheduling a task 𝑡𝑖 on a 

machine 𝑣𝑚 requires maintaining a local schedule within the 

virtual machine. To optimize the use of the available cores, 

each virtual machine is managed similarly to how a job and 

resource manager would handle tasks. Keeping track of the 

number of processors available on each virtual machine is 

essential for determining the earliest possible start time for a 

new task on that machine (i.e., 𝑠𝑡𝑘
𝑖 ). Once 𝑣𝑚 is selected for 

the execution of 𝑡𝑖, the number of processors available on 𝑣𝑚 

is updated accordingly (line 6). 

The workflow is traversed level by level, from the bottom to 

the top (lines 8-40). The reasoning behind this approach is 

that during the initial placement, which proceeds from top to 

bottom, only the data volume from a task's direct 

predecessors is considered. It is not feasible to factor in the 

locality of data required by a task's direct descendants since 

their placements have not yet been determined. As a result, 

this can lead to unnecessary data movements that could 

otherwise be avoided. 

We define level 0 as the topmost level of the Directed Acyclic 

Graph (DAG), which contains all the entry tasks of the 

workflow. For each subsequent task, its level is recursively 

computed as the maximum level of its predecessors plus one. 

Ultimately, we denote the total number of levels in the 

workflow as L. 

We begin by saving the current start time 𝑠𝑡𝑖
𝑐  and the current 

mapping 𝑣𝑚𝑖  for each task 𝑡𝑖 in 𝑇𝑙 (lines 11-12). Next, we 

calculate the local volume 𝐿𝑉𝑘
𝑖 for task 𝑡𝑖 on machine 𝑣𝑚𝑘 

(lines 13-15). Afterward, we store the local volume for the 

current mapping of 𝑡𝑖 (line 16) before canceling the current 

mapping (line 17). 

Canceling the mapping of all the tasks at a given level creates 

idle processors of different machines. These processors can 

be leveraged to enhance data locality by "migrating" certain 

tasks from one machine to another. The conditions for 

migrating a task 𝑡𝑖 from its previous mapping to a new 

mapping on 𝑣𝑚𝑘 are twofold: it must improve data locality, 

i.e., 𝐿𝑉𝑘
𝑖 ≥ 𝐿𝑉𝑖

𝑐 , and reduce the task's start time, i.e., 𝑠𝑡𝑘
𝑖  ≤ 

𝑠𝑡𝑖
𝑐  (lines 21-27). 

At each step, the algorithm attempts to find a better mapping 

for each task by prioritizing the machine that offers the largest 

increase in local data volume. If the task can also start earlier 

on this machine, it is selected for a new tentative mapping. 

The first option (lines 28–31) is to execute this task and 

update the processor count, provided that its ready time 

matches its calculated start time (line 29), which does not 

account for data transfer time. 

The second option (lines 32–37) applies if the ready time of 

a task is strictly earlier than its calculated start time (line 32). 

In this case, if all predecessor tasks 𝑡𝑗, whose calculated 

finish time coincides with the calculated start time of the 

ready task 𝑡𝑖, have finished their execution (i.e., they have 

released at least one processor) (line 33), then 𝑡𝑖 is executed, 

and the count of available processors is updated (lines 34–

35). Note that the calculated finish and start times do not 

factor in data transfer time but rather consider the data 

transfer volumes. 

 

Algorithm SMDT-ERU 

1: Compute 𝑅𝑎𝑛𝑘𝑖 for each task 𝑡𝑖 

2: Sort 𝑇 by decreasing 𝑅𝑎𝑛𝑘𝑖 values 

3: for all 𝑡𝑖 ϵ 𝑇 do 

4:      𝑣𝑚 ←{𝑣𝑚𝑘  ϵ 𝑉𝑀 | 𝑠𝑡𝑘
𝑖  is minimal and  𝐿𝐼𝑉𝑘

𝑖  is   

maximal} 

5:      Map 𝑡𝑖 on 𝑣𝑚 

6:      Update 𝑝𝑟𝑜𝑐𝑘  

7: endfor                     

8: for 𝑙 = L to 0 do 

9:      𝑇𝑙 ← tasks in level 𝑙 sorted by decreasing 𝑅𝑎𝑛𝑘 

values 

10 :      for all 𝑡𝑖 ϵ 𝑇𝑙 do 

11 :           𝑠𝑡𝑖
𝑐  ← current start time of  𝑡𝑖 

12 :           𝑣𝑚𝑖  ← current mapping of  𝑡𝑖 

13 :           for all 𝑣𝑚𝑘  ϵ 𝑉𝑀 do 

14 :                𝐿𝑉𝑘
𝑖 ← 𝐿𝐼𝑉𝑘

𝑖  + 𝐿𝑂𝑉𝑘
𝑖 

15 :           endfor 

16 :           𝐿𝑉𝑖
𝑐  ← current local volume of  𝑡𝑖 

17 :           Cancel the current mapping of  𝑡𝑖 

18 :      endfor 

19 :      for all 𝑡𝑖 ϵ 𝑇𝑙 do 

20 :           sort 𝑉𝑀 by decreasing 𝐿𝑉𝑘
𝑖 values 

21 :           while 𝐿𝑉𝑘
𝑖 ≥ 𝐿𝑉𝑖

𝑐  do 

22 :                if 𝑠𝑡𝑘
𝑖  ≤ 𝑠𝑡𝑖

𝑐  then 

23 :                     Map 𝑡𝑖 on 𝑣𝑚𝑘 

24 :                     Update 𝑝𝑟𝑜𝑐𝑘 

25 :                     break 

26 :                endif 

27 :           endwhile 

28 :           if 𝑝𝑟𝑜𝑐𝑘  ≥ 0 then 

29 :                if 𝑟𝑡𝑘
𝑖  = 𝑠𝑡𝑘

𝑖  then 

30 :                     Execute 𝑡𝑖 on 𝑣𝑚𝑘 

31                     Update 𝑝𝑟𝑜𝑐𝑘 

32 :                else if 𝑟𝑡𝑘
𝑖  ˂ 𝑠𝑡𝑘

𝑖  then 

33 :                     if all tasks 𝑡𝑗 | 𝑓𝑡𝑘
𝑗
 = 𝑠𝑡𝑘

𝑗
 are computed 

then 

34 :                          Execute 𝑡𝑖 on 𝑣𝑚𝑘 

35 :                          Update 𝑝𝑟𝑜𝑐𝑘 

36 :                     endif 

37 :                endif  

38 :           endif 

39 :      endfor 

40 : endfor 
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Table II : Some characteristics of used workflows 

Workflow tasks input files size 

(GB) 

total files size 

(GB) 

CyberShake 1000 150.76 400.39 

Epigenomics 997 1217.72 1230.93 

 

 

 

 

 

 

Figure 1: Structure of the used workflows. 

 

V. RESULTS AND DISCUSSION 

To evaluate our approach, we used two data-intensive parallel 

applications (scientific workflows) from the Pegasus Gallery  

 

[24]. These workflows are designed to simulate real-world 

scientific applications. The key characteristics of these 

applications are summarized in Table II and their structure 

depicted in Figure 1. Epigenomics: is a data processing 

pipeline designed to automate the execution of various 

genome sequencing operations. Cybershake: is an application 

developed by the Southern California Earthquake Center 

aimed at characterizing earthquake hazards. Our simulations 

were carried out using WRENCH [25], [26], [27] version 2.3 

and SimGrid [28] version 3.36. 

To generate the various platforms and prevent resource 

wastage specifically, to avoid leasing resources that will 

remain unused the number of tasks that can be executed in 

parallel for each workflow is assessed. This involves 

oversizing the platform, meaning it is provisioned with as 

many cores as there are tasks in the workflow. In this study, 

both workflows contain 1,000 tasks, leading to the 

consideration of a platform with 1,000 cores. This approach 

enabled us to identify the total number of cores that could be 

utilized concurrently for each workflow. For CyberShake, 

374 cores are utilized in parallel, while for Epigenomics, 246 

cores are employed concurrently. This preliminary analysis 

will inform the next section, where we will establish the limits 

of platforms to be used for each workflow in our experiments. 

This evaluation begins by analyzing the effect of virtual 

machine size on the execution time of scientific workflows. 

For each workflow, we examine infrastructures where we 

incrementally increase the maximum number of cores per 

VM, ranging from 2 to 96 cores. Thus, for a given total 

number of cores to be utilized, we create platforms with 2 

cores per VM, 4 cores per VM, and so on, up to 96 cores per 

VM. 

As illustrated in Figures 2 and 3, platforms with 2 cores per 

VM exhibit poor execution times compared to those with 32 

cores per VM, and the latter also perform worse than 

platforms with 96 cores per VM. Increasing the total number 

of cores per VM results in better execution times. 

Consequently, this study advocates for the use of larger VMs 

(i.e., VMs with multiple cores), as they can execute several 

tasks in parallel, significantly reducing the makespan. 

In Figures 2 and 3, the term max_ft represents the theoretical 

minimum bound, assuming no communication occurs during 

workflow execution. The execution times obtained on 

platforms with large VMs (i.e., those with 96 cores) approach 

this theoretical minimum. 

Distinct behaviors are observed among the three workflows 

considered. First, the total number of cores used has minimal 

impact on execution time for the CyberShake application, 

while the Epigenomics workflow shows a plateau in 

execution time starting from the use of two total cores. 

Second, although execution time decreases as the size of the 

virtual machine instances increases, the improvement 

becomes marginal for sizes beyond 32 cores. Notably, the 

CyberShake workflow, which generates significantly more 

intermediate data than the other two 

 

 

 

 

 

 

 

Figure 2: Evolution of the Makespan of the CyberShake 

Workflow with Variation of the Total Number of Cores per  

 

 

VM. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Evolution of the Makespan of the Epigenomics 

Workflow with Variation of the Total Number of Cores 

per VM. 

 

workflows, performs worse when relying on the local storage 

of smaller instances (i.e., those with up to eight cores) 

compared to a configuration with one core per VM where all 

intermediate data is stored on the EBS service. This occurs 

because utilizing too many small VMs on a single host (i.e., 

up to 48 instances with two cores each) increases the volume 
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of data transfers between instances and causes network 

contention. In contrast, in the baseline configuration, each 

VM benefits from a dedicated network connection to the 

shared storage service.The main objective of this study is to 

minimize the execution time of an application. To achieve 

this goal, the main contribution of this paper is the reduction 

of files transferred during the execution of the application, 

which has a considerable impact on the execution time. To 

evaluate the performance of this algorithm, the proposed 

approach is compared to HEFT [29] and Max-Min [30], two 

very popular heuristics for parallel application scheduling. 

HEFT andMax-Min have been adapted to IaaS cloud 

resources and the simulation environment. The simulation 

results show that the proposed approach offers good results 

compared to Max-Min and often similar results to HEFT. 

In the results of Figures 4 and 5, we use platforms where the 

total number of cores used ranges from 2 to 374 cores for 

CyberShake, and from 2 to 246 cores for Epigenomics, in 

increments of 2. 

Large VMs are preferred for each platform as they allow 

multiple tasks to be executed in parallel. Juve et al. [31] 

demonstrated that each task in a real scientific workflow is a 

single-core activity, meaning it can only run on a single 

computing core, rather than utilizing all the cores of a VM. 

This study follows the same principle. Therefore, a user 

wishing to run a parallel application in the cloud needs to rent 

a total number of cores, and the proposed approach provides 

a platform that minimizes the application's completion time. 

For example, if a user wants to utilize 100 cores in total, the 

platform will consist of one VM with 96 cores and another 

with 4 cores. For a total of 200 cores, the platform will include 

three VMs: two with 96 cores and one with 8 cores, and so 

on. 

When a platform contains more virtual machines (VMs), 

more files will need to be transferred across the network. 

While large VMs are prioritized for application execution, the 

key reason behind this choice is to maximize bandwidth 

usage for these machines, as summarized in Table I. With the 

HEFT and Max-Min algorithms, an increase in the number of 

VMs on the platform leads to a higher volume of file transfers 

over the network. However, the proposed approach reduces 

file transfers at two levels for each task: reducing transfers 

from parent tasks and reducing transfers to child tasks. This 

strategy allows us to achieve better results compared to HEFT 

and Max-Min, as shown in Figures 4 and 5. 

These experiments demonstrate that our approach yields 

better results, as summarized by the following improvements. 

The CyberShake workflow achieves a 74.06% reduction in 

makespan compared to HEFT and 90.37% reduction in 

makespan compared to Max-Min (c.f. Figure 4). For the 

Epigenomics workflow, our approach achieves a 2.85% 

improvement in makespan compared to the HEFT algorithm, 

and 12.99% compared to the Max-Min algorithm (c.f. Figure 

5). This relatively modest gain can be explained by the 

limited amount of data processed during the execution of the  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Evaluation Results for the CyberShake 

Workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Evaluation Results for the Epigenomics 

Workflow. 

 

workflow, amounting to 13.21 GB (c.f. Table II), calculated 

as the difference between the total number of files and the 

input files. In this context, the makespan is not significantly 

impacted by data transfer since the data volumes are small, 

which limits the effect of our optimization on this particular 

aspect. 

However, for the CyberShake workflow, the more significant 

improvement in makespan is due to the notable reduction in 

data transferred over the network. During the execution of the 

CyberShake workflow, 249.63 GB of data are processed (c.f. 

Table II). This large volume can cause a noticeable 

degradation in the total execution time, primarily due to data 

transfers between tasks. These transfers act as a bottleneck, 

slowing down the workflow's execution. 

Our approach stands out by employing a rigorous task 

scheduling strategy and local storage for preserving the 

output data of each task. This minimizes data transfers across 

the network, leading to a substantial reduction in makespan, 

especially in scenarios where handling large volumes of data 

is a key factor. 
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VI. CONCLUSION AND FUTURE WORK 

Infrastructure as a Service (IaaS) clouds now enable scientists 

to execute their data-intensive workflows on infrastructures 

tailored to the computing and storage requirements of these 

applications. Determining the optimal set of virtual machine 

instances to form these infrastructures is a complex task, 

often handled by Workflow Management Systems (WMS). A 

critical factor in achieving high performance is the ability to 

effectively leverage the specific characteristics of virtual 

machine instances. 

In this paper, we first demonstrated the benefits of using 

multi-core machines, as increasing the number of cores 

allows multiple tasks to be executed on the same machine, 

with the bandwidth connecting the machine to the switch 

being proportional to the number of cores. We then proposed 

scheduling algorithms that minimize the makespan by 

reducing data transfers between dependent tasks over the 

network. Finally, the experimental results showed that our 

proposed approach yields better results than both HEFT and 

Max-Min, two of the most effective list-scheduling 

algorithms. 

As part of our future work, we plan to compare the simulated 

executions with actual runs on the AWS computing cloud 

using M5d instances to validate the impact of the proposed 

algorithms. Additionally, we aim to explore the multi-

objective aspect of the scheduling problem, allowing users to 

prioritize either shorter execution times or lower costs. We 

will propose a complementary approach where one of the 

objectives is fixed—either a predefined budget or a set 

deadline. 
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