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Abstract

We consider an M/G/1 queue with K -phase of optional vacation. The vacation

policy is after completion of service if there are no customers in the system, the server take

vacation consisting of K -phases. After completing the Kth phases of vacation, the server

enter into the service station independent of the number of customers in the system. The

vacation periods follows general distribution. For this model the supplementary variable

technique has been applied to obtain the probability generating functions of number of

customers in the queue at different server states. Some particular models are obtained

and a numerical study is also carried out.
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1. Introduction

Many real life queueing situations encountered in day-to-day as well as

industrial scenario,the vacation models are the models which are the best fit. In

queueing theory, the vacation perior can be considered as the period during which

the server is not available as he/she has left, when the system becomes empty. In the

M/G/1 queueing system, the concept of vacation had been first studied by Keilson

and Servi (1987), they introduced the concept of modified service time which has a

main role in the system with general service and vacation times. In many real life

situations such as production system, bank services, computer and communication

networks, we have the concept of vacation. Also for overhauling or maintanance of

a system the server(system) may go to vacation.

The classic M/G/1 queue with various vacation policies have been well studied

(see Doshi (1986, 1990), Gross and Harris (1998), Ke (1986), Takagi (1991)). The

two monographes of Tian and Zhang (2006) and Takagi (1991) collected the research

results of the M/G/1 vacation queues. Chen et al.(2009) considered a GI/M/1
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queue with phase type of working vacations and vacation interruption where the

vacation time follows a phase type distribution. Tian and Zhang (2001) treated

the Geo/G/1 system with variant policies. In this system, they assumed that

after serving all customers in the system, the server take a random maximum

number of vacation before returning to the service station. Tian and Zhang (2002,

2003) discussed the discrete time GI/Geo/1 queue with server vacations and the

GI/M/1 queue with PH vacations or setup times, respectively. Ke and Chu

(2006) analysed the M [X]/G/1 queue with modified vacation policy by stochastic

decomposition property and Ke (2007) used supplementary variable technique to

study an M [X]/G/1 queue with balking under a variant vacation policy.

Ke (2003) made the contribution to the control policy ofM/G/1 queue with

server vacations, startup and breakdowns. He obtained the system characteristics of

the model and obtained the total expected cost function per unit time to determine

the optimal threshold of N policies at a minimum cost. Ke et al.(2010), studied

the operating characteristics of an M [X]/G/1 queueing system with N -policy and

at most J vacations. In this model they assumed that the server takes at most

J vacations repeatedly until atleast N customers returning from a vacation are

waiting in the queue.

In this paper we consider an M/G/1 queue with K -phase of optional vacation.

The vacation policy is after completion of service if there are no customers in

the system, the server take vacation consisting of K -phases. After completing

the Kth phases of vacation, the server enter into the service station independent

of the number of customers in the system. The vacation periods follows general

distribution. The mathematical description and analysis of this model is given in

section 2 . In section 3 , we derive some operating characteristics of the model

analysed in section 2 . Section 4 deals with some particular models and section 5

presents some numerical results related to the model analyzed in this paper. The

last section gives a conclusion.

2. The Mathematical Model and Analysis

In a single sever queueing system, the customer arrival follows a Poisson process

with parameter λ and the service time is generally distributed with distribution

function B(x) whose Laplace stieltjes transform(LST) is B∗(s). After completion of

a service if there are no customers in the system, the server takes vacation consisting

of K -phases with each phase respectively has time duration V1, V2, V3, ..., VK and

are independent random variables with distribution functions Vi(x), i = 1, 2, ..., K.

After completing the Kth phase of vacation the server enter into the system

independent of the number of customers in the system. That is if there are customers

in the queue, the server starts service for the customer in the head of the queue other

wise, the server waits ideal for new arrival. The arriving customers waiting in a queue

of infinite capacity, if the service is not immediate due to server is busy or server is
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on vacation. For service, the first come first served rule is used.

Now the modified vacation period is

V = V1 + V2 + V3 + ... + VK (1)

and the LST of V is

V ∗(s) =
K
∏

i=1

V ∗
i (s) (2)

whose mean is

E(V ) =
K

∑

j=1

E(Vj) (3)

Now, it is assumed that the arrival rates are state dependent, ie, the arrival rate

λ is defined as,

λ =















λ0, if the arrival is during idle period

λ1, if the arrival is during service period

λ2, if the arrival is during vacation period

The time required by a customer to complete a service cycle is Bc = B + V

where V is defined in equation (1). Now the LST of Bc is B∗
c (s) = B∗(s)V ∗(s),

where V ∗(s) is given in equation (2) and E(Bc) = E(B) + E(V ), where E(V ) is

given in equation (3).

Asssume that B(0) = Vi(0) = 0, B(∞) = Vi(∞) = 1; i = 1, 2, ..., K. The elapsed

service time of the customer in service at time t is denoted by ξ0(t) and the elapsed

vacation time of phase i is denoted by ηi(t).

Let Y (t) be the state of the server at time t and is defined as,

Y (t) =















0, if the server is idle at time t

i, if the server is at ith phase of vacation at time t; i=1, 2,..., K

K + 1, if the server is busy at time t

Let the random variable L(t) is defined as

L(t) =















0, if Y (t) = 0

ηi(t), if Y (t) = i; i = 1, 2, .., K

ξ0(t), if Y (t) = K + 1

and let the random variable N(t), is the number of customers in the queue. Now

the following probabilities have been defined for the analysis:

Q(t) = Pr {N(t) = 0, L(t) = 0}

Pn(t, x)dx = Pr {N(t) = n, Y (t) = K + 1, x < ξ0(t) ≤ x + dx} , n ≥ 0

Ri,n(t, x)dx = Pr {N(t) = n, Y (t) = i, x < ηi(t) ≤ x + dx} , n ≥ 0, i = 1, 2, ..., K
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where {(N(t), Y (t)), t ≥ 0} is a bivariate Markov process with state space

S = {(0, 0)}∪{(K + 1, j)}∪{(i, j)} , i = 1, 2, ..., K; j ≥ 0. The hazard rate function

of B is µ(x)dx =
dB(x)

1 − B(x)
is the conditional probability of completion of a

service during the time interval (x, x + dx] given that the elpased service time

is x. The similar quantity for Vi is ηi(x)dx =
dVi(x)

1 − Vi(x)
, i = 1, 2, ..., K. In steady

state,the corresponding probabilities are Q = lim
t→∞

Q(t), Pn(x) = lim
t→∞

Pn(t, x) and

Ri,n(x) = lim
t→∞

Ri,n(t, x).

The model is governed by the following differential difference equations for x > 0

d

dx
P0(x) + (λ1 + µ(x))P0(x) = 0 (4)

d

dx
Pn(x) + (λ1 + µ(x))Pn(x) = λ1Pn−1(x), n ≥ 0 (5)

d

dx
Ri,0(x) + (λ2 + ηi(x))Ri,0(x) = 0, i = 1, 2, ..., K (6)

d

dx
Ri,n(x) + (λ2 + ηi(x))Ri,n(x) = λ2Ri,n−1(x), i = 1, 2, ..., K (7)

λ0Q =

∫ ∞

0

ηK(x)RK,0(x)dx (8)

The boundary conditions are

P0(0) = λ0Q +

∫ ∞

0

ηK(x)RK,1(x)dx +

∫ ∞

0

P1(x)µ(x)dx (9)

Pn(0) =

∫ ∞

0

ηK(x)RK,n+1(x)dx +

∫ ∞

0

Pn+1(x)µ(x)dx, n ≥ 1 (10)

R1,0(0) =

∫ ∞

0

µ(x)P0(x)dx (11)

R1,n(0) = 0, n ≥ 1 (12)

Ri,n(0) =

∫ ∞

0

Ri−1,n(x)ηi−1(x)dx, i = 2, 3, ..., K; n = 0, 1, 2, ... (13)

The normalizing condition is

Q + P (1) +
K

∑

i=1

Ri(1) = 1

For the analysis, the following probability generating functions have been defined

P (x, z) =
∞
∑

n=0

znPn(x) and Ri(x, z) =
∞
∑

n=0

znRi,n(x), i = 1, 2, · · ·K.

From equation (4), we have

P0(x) = P0(0)(1 − B(x))e−λ1x (14)
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Multiplying equation (5) by zn , summing from 1 to ∞ and adding equation (4),

we get

P (x, z) = P (0, z)(1 − B(x))e−λ1(1−z)x (15)

Multiplying equation (7) by zn , summing from 1 to ∞ and adding equation (6),

we get

Ri(x, z) = Ri(0, z)(1 − Vi(x))e−λ2(1−z)x, i = 1, 2, ..., K (16)

From equation (6), we get

Ri,0(x) = Ri,0(0)(1 − Vi(x))e−λ2x, i = 1, 2, ..., K (17)

Multiplying equation (10) by zn , summing from 1 to ∞ and adding equation (9)

and multiply by z , we get

zP (0, z) =

∫ ∞

0

ηK(x)RK(x, z)dx −

∫ ∞

0

ηK(x)RK,0(x)dx +

∫ ∞

0

µ(x)P (x, z)dx

−

∫ ∞

0

µ(x)P0(x)dx + zλ0Q (18)

From equation (17), we have
∫ ∞

0

Ri,0(x)ηi(x)dx = Ri,0(0)V ∗
i (λ2), i = 1, 2, ..., K (19)

From equation (16), we get

∫ ∞

0

Ri(x, z)ηi(x)dx = Ri(0, z)V ∗
i (λ2(1 − z)), i = 1, 2, ..., K (20)

From equation (14), we have
∫ ∞

0

P0(x)µ(x)dx = P0(0)B∗(λ1) (21)

From equation (15), we get
∫ ∞

0

P (x, z)µ(x)dx = P (0, z)B∗(λ1(1 − z)) (22)

Using equations (19),(20),(21) and (22) in (18), we have

[z − B∗(R)]P (0, z) = zλ0Q + RK(0, z)V ∗
K(T ) − RK,0(0)V ∗

K(λ2) − P0(0)B∗(λ1) (23)

where R = λ1(1 − z) and T = λ2(1 − z)

Multiplying equation (12) by zn , summing from n = 1 to ∞ and adding with

equation (11), we get

R1(0, z) = P0(0)B∗(λ1) (24)

Multiplying equation (13) by zn and summing from n = 0 to ∞, we get

Ri(0, z) =
i−1
∏

l=1

V ∗
l (T )B∗(λ1)P0(0), i = 2, 3, ..., K (25)
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Put n = 0 in equation (13), we get

Ri,0(0) =
i−1
∏

l=1

V ∗
l (λ2)B

∗(λ1)P0(0), i = 2, 3, ..., K (26)

From equation (23), we get

[z − B∗(R)]P (0, z) = zλ0Q + RK(0, z)V ∗
K(T ) − RK,0(0)V ∗

K(λ2) − P0(0)B∗(λ1) (27)

From equation (8), we get

λ0Q = V ∗
K(λ2)RK,0(0)

RK,0(0) =
λ0Q

V ∗
K(λ2)

(28)

Substituting equation (28) in (27), we get

P (0, z) =
B∗(λ1)P0(0)

(z − B∗(R))

{

(z − 1)
K
∏

l=1

V ∗
l (λ2) +

K
∏

l=1

V ∗
l (T ) − 1

}

(29)

Now

P (z) =

∫ ∞

0

P (x, z)dx = P (0, z)
[1 − B∗(R)]

R

and Ri(z) =

∫ ∞

0

Ri(x, z)dx = Ri(0, z)
[1 − V ∗

i (T )]

T
, i = 1, 2, ..., K.















(30)

To find the unknown probability P0(0) we use the normalizing condition

Q + P (1) +
K

∑

i=1

Ri(1) = 1,

we get

P0(0) =
λ0(1 + λ1B

∗′(0))

B∗(λ1)C1

(31)

where

C1 = (1 + (λ1 − λ0)B
∗′(0))

K
∏

l=1

V ∗
l (λ2) − λ0[1 + (λ1 − λ2)B

∗′(0)]E(V )

and substituting equation (29) in (28),we get

Q =

(1 + λ1B
∗′(0))

K
∏

l=1

V ∗
l (λ2)

C1

(32)

Equations in (30), together with (24), (25), (28), (29), (31) and (32) gives the

probability generating function of number of customers in the queue with server is

busy and the server is on the ith phase of vacation (i = 1, 2, ..., K) respectively.
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3. Some operating characteristics

In this section we derive the operating characteristics mean and variance

number of customers in the queue when the server is busy and mean and variance

number of customers in the queue when the server is on the ith(i = 1, 2, ..., K) phase

of vacation.

Mean number of customers in the queue when the server is busy is

Lb =
λ0C2

2(1 + λ1B∗′(0))C1

Variance of number of customers in the queue when the server is busy is

Vb =
λ0[2C1C3 − 3λ0C

2
2 ]

12(1 + λ1B∗′(0))2C2
1

Mean number of customers in the queue when the server is on vacation is

Lv =
λ0λ2(1 + λ1B

∗′(0))E(V 2)

2C1

Variance of number of customers in the queue when the server is on vacation is

Vv =
λ0λ2(1 + λ1B

∗′(0))

12C2
1

{

6C1E(V 2) − 3λ0λ2(1 + λ1B
∗′(0))E(V 2)2

+ 4λ2C1E(V 3)
}

where

E(V 2) =
K

∑

i=1

E(V 2
i ) + 2

K−1
∑

n=1

E(Vn)
K

∑

i=n+1

E(Vi)

E(V 3) =
K

∑

i=1

E(V 3
i ) + 3

[

K−1
∑

n=1

E(V 2
n )

K
∑

i=n+1

E(Vi) +
K−1
∑

n=1

E(Vn)
K

∑

i=n+1

E(V 2
i )

]

+ 6
K−2
∑

m=1

E(Vm)
K−1
∑

j=m+1

E(Vj)
K

∑

n=j+1

E(Vn)

C2 = λ1B
∗′′2(0)(

K
∏

l=1

V ∗
l (λ2) + λ2E(V )) − λ2

2B
∗′(0)(1 + λ1B

∗′(0))E(V 2)

C3 = [3λ1B
∗′′(0)(1 + λ1B

∗′(0) + λ2
1B

∗′′(0)) − 2λ2
1(1 + λ1B

∗′(0))B∗′′′(0)]

× (
K
∏

l=1

V ∗
l (λ2) + λ2E(V )) − 2λ3

2B
∗′(0)(1 + λ1B

∗′(0))2E(V 3)

+ 3λ2
2(1 + λ1B

∗′(0))(λ1B
∗′′(0) − (1 + λ1B

∗′(0))B∗′(0))E(V 2)
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4. Some particular cases

In this section, we present five particular cases by assuming particular form

to the parameters and/or particular probability distribution to service time and/or

vacation time.

Case 1: Now we take λ0 = λ1 = λ2 = λ

Q =

(1 + λB∗′(0))
K
∏

l=1

V ∗
l (λ)

K
∏

l=1

V ∗
l (λ) + λE(V )

Lb =
λ2D1

2(1 + λB∗′(0))(
K
∏

l=1

V ∗
l (λ) + λE(V )

Vb =

λ2[2(
K
∏

l=1

V ∗
l (λ) + λE(V ))D2 − 3λ2D2

1]

12(1 + λB∗′(0))2(
K
∏

l=1

V ∗
l (λ) + λE(V ))2

Lv =
λ2(1 + λB∗′(0))E(V 2)

2(
K
∏

l=1

V ∗
l (λ) + λE(V ))

Vv =
λ2(1 + λB∗′(0))

12(
K
∏

l=1

V ∗
l (λ) + λE(V ))2

{

(
K
∏

l=1

V ∗
l (λ) + λE(V ))[6E(V 2) + 4λE(V 3)]

− 3λ2(1 + λB∗′(0))E(V 2)2
}

where

D1 = B∗′′(0)(
K
∏

l=1

V ∗
l (λ) + λE(V )) − λB∗′(0)(1 + λB∗′(0))E(V 2)

D2 = [3B∗′′(0)(1 + λB∗′(0) + λ2B∗′′(0)) − 2λ(1 + λB∗′(0))B∗′′′(0)]

× (
K
∏

l=1

V ∗
l (λ) + λE(V )) − 2λ2B∗′(0)(1 + λB∗′(0))2E(V 3)

+ 3λ(1 + λB∗′(0))(λB∗′′(0) − (1 + λB∗′(0))B∗′(0))E(V 2)

Cases 2: The service time and vacation time follows exponential distribution.

That is, B(x) = 1 − eµ(x), B∗(s) =
µ

s + µ
, B∗′(0) =

−1

µ
, B∗′′(0) =

2

µ2
,

B∗′′′(0) =
−6

µ3
, Vi(x) = 1 − e−ηi(x), V ∗

i (s) =
ηi

s + ηi

, V ∗′

i (0) =
−1

νi

, V ∗′′

i (0) =
2

ν2
i

,

V ∗′′′

i (0) =
−6

νi3
, i = 1, 2, · · · , K.
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Q =

(µ − λ1)
K
∏

l=1

ηl

λ2 + ηl

D3

Lb =
λ0D6

(µ − λ1)D3

Vb =
λ0[D3D7 − λ0D

2
6]

(µ − λ1)2D2
3

Lv =
λ0λ2(µ − λ1)D4

D3

Vv =
λ0λ2(µ − λ1)[D3D4 − 2λ2D3D5 − λ0λ2(µ − λ1)D

2
4]

D2
3

where

D3 = (µ + (λ0 − λ1))
K
∏

l=1

ηl

λ2 + ηl

+ λ0(µ + (λ2 − λ1))
K

∑

i=1

1

νi

D4 =
K

∑

n=1

1

ν2
n

+
K−1
∑

n=1

1

νn

K
∑

i=n+1

1

νi

D5 =
K

∑

n=1

1

ν3
n

+
K−1
∑

n=1

1

ν2
n

K
∑

i=n+1

1

νi

+
K−1
∑

n=1

1

νn

K
∑

i=n+1

1

ν2
i

+
K−2
∑

m=1

1

νm

K−1
∑

j=m+1

1

νj

K
∑

n=j+1

1

νn

D6 = λ1(
K
∏

l=1

ηl

λ2 + ηl

+ λ2

K
∑

i=1

1

νi

) + λ2
2(µ − λ1)D4

D7 = λ1(µ + λ1)(
K
∏

l=1

ηl

λ2 + ηl

+ λ2

K
∑

i=1

1

νi

) + λ2
2(µ

2 − λ2
1)D4 − 2λ3

2(µ − λ1)
2D5

Case 3: The service time follows exponential distribution.

That is, B(x) = 1 − eµx, B∗(s) =
µ

s + µ
, B∗′(0) =

−1

µ
, B∗′′(0) =

2

µ2
,

B∗′′′(0) =
−6

µ3
.

Q =

(µ − λ1)(
K
∏

l=1

V ∗
l (λ2))

D8

Lb =
λ0D9

2(µ − λ1)D8

Vb =
λ0[2D8D10 − 3λ0D

2
9]

12(µ − λ1)2D2
8
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Lv =
λ0λ2(µ − λ1)E(V 2)

2D8

Vv =
λ0λ2(µ − λ1)

12D2
8

{

6D8E(V 2) + 4λ2D8E(V 3) − 3λ0λ2(µ − λ1)E(V 2)2
}

where

D8 = (µ + (λ0 − λ1))
K
∏

l=1

V ∗
l (λ2) − λ0(µ + (λ2 − λ1))

K
∑

i=1

V ∗′

i (0)

D9 = 2λ1(
K
∏

l=1

V ∗
l (λ2) + λ2E(V )) + λ2

2(µ − λ1)E(V 2)

D10 = 6λ1(µ + λ1)(
K
∏

l=1

V ∗
l (λ2) + λ2E(V )) + 3λ2

2(µ
2 − λ2

1)E(V 2)

+ 2λ3
2(µ − λ1)

2E(V 3)

Case 4: The vacation time follows exponential distribution.

That is, Vi(x) = 1 − e−ηi(x), V ∗
i (s) =

ηi

s + ηi

, V ∗′

i (0) =
−1

νi

, V ∗′′

i (0) =
2

ν2
i

,

V ∗′′′

i (0) =
−6

ν3
i

, i = 1, 2, · · · , K.

Q =

(1 + λ1B
∗′(0))

K
∏

l=1

ηl

λ2 + ηl

D11

Lb =
λ0D12

2(1 + λ1B∗′(0))D11

Vb =
λ0[2D11D13 − 3λ0D

2
12]

12(1 + λ1B∗′(0))2D2
11

Lv =
λ0λ2(1 + λ1B

∗′(0))D4

D11

Vv =
λ0λ2(1 + λ1B

∗′(0))[D4D11 − 2λ2D5D11 − λ0λ2(1 + λ1B
∗′(0))D2

4]

D2
11

where

D11 = (1 + (λ1 − λ0)B
∗′(0))

K
∏

l=1

ηl

λ2 + ηl

+ λ0(1 + (λ1 − λ2)B
∗′(0))

K
∑

i=1

1

νi

D12 = λ1B
∗′′(0)(

K
∏

l=1

ηl

λ2 + ηl

+ λ2

K
∑

i=1

1

νi

) − 2λ2
2B

∗′(0)(1 + λ1B
∗′(0))D4

D13 = [3λ1B
∗′′(0)(1 + λ1B

∗′(0) + λ2
1B

∗′′(0)) − 2λ2
1B

∗′′′(0)(1 + λ1B
∗′(0))]

× (
K
∏

l=1

ηl

λ2 + ηl

+ λ2

K
∑

i=1

1

νi

) + 12λ3
2B

∗′(0)(1 + λ1B
∗′(0))2D5

+ 6λ2
2(1 + λ1B

∗′(0))D4[λ1B
∗′′(0) − B∗′(0)(1 + λ1B

∗′(0))]
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Case 5: Now λ0 = λ1 = λ2 = λ and K = 1 (An M/G/1 queue with single

vacation)

Q =
(1 + λB∗′(0))V ∗

1 (λ)

V ∗
1 (λ) − λV ∗′

1 (0)

Lb =
λ2D14

2(1 + λB∗′(0))(V ∗
1 (λ) − λV ∗′

1 (0))

Vb =
λ2[2(V ∗

1 (λ) − λV ∗′

1 (0))D15 − 3λ2D2
14]

12(1 + λB∗′(0))2(V ∗
1 (λ) − λV ∗′

1 (0))2

Lv =
λ2V ∗′′

1 (0)(1 + λB∗′(0))

2(V ∗
1 (λ) − λV ∗′

1 (0))

Vv =
1

12(V ∗
1 (λ) − λV ∗′

1 (0))2

{

λ2(1 + λB∗′(0))[6V ∗′′

1 (0)(V ∗
1 (λ) − λV ∗′

1 (0))

− 4λV ∗′′′

1 (0)(V ∗
1 (λ) − λV ∗′

1 (0)) − 3λ2V ∗′′2

1 (0)(1 + λB∗′(0))]
}

where

D14 = B∗′′(0)(V ∗
1 (λ) − λV ∗′

1 (0)) − λB∗′(0)(1 + λB∗′(0))V ∗′′

1 (0)

D15 = [3B∗′′(0)(1 + λB∗′(0) + λ2B∗′′(0)) − 2λB∗′′′(0)(1 + λB∗′(0))]

× (V ∗
1 (λ) − λV ∗′

1 (0)) + 2λ2B∗′(0)(1 + λB∗′(0))2V ∗′′′

1 (0)

+ 3λ(1 + λB∗′(0))[λB∗′′(0) − B∗′(0)(1 + λB∗′(0))]V ∗′′

1 (0)

5. Numerical results

In this section, We present some numerical results in order to illustrate the effect

of various parameters on the performance measures of the models in section 4 . The

effect of the parameters arrival rate, service rate, vacation rate and the number

of phases of vacation on the system performance measures (i) the mean number

of customers when the server is busy (Lb) , (ii) the mean number of customers in

the queue when the server is on vacation (Lv) , (iii) the variance of the number

of customers in the queue when the server is busy (Vb) and (iv) the variance of

the number of customers in the queue when the server is on vacation (Vv) have

been numerically analysed. Figures 1 − 4 represents the graph of mean number of

customers when K = 1, 3, 5 and 7 by varying the service rate. Tables 5 − 8 shows

the variance of number of customers. In all the figures, it is clear that the mean

number of customers in the queue when the server is busy is decreasing function with

respect to service rate where as its counter part are increasing functions as expected.

The variance value with respect to server busy decreases as the service rate increases

but in the case of variance with respect to vacation we encounters the contary

concept that is variance increases. For this analysis the values of λ0 = 0.6 , λ1 = 0.7,

λ2 = 0.8 are fixed.
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Figure 1: Mean number of customers for K=1
Service rate
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Figure 2: Mean number of customers for K=3
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Figure 3: Mean number of customers for K=5
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Figure 4: Mean number of customers for K=7
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Table 5: Variance for K = 1

µ Vb Vv

1.1 13.5135 4.5233

1.2 11.4613 5.0948

1.3 10.1056 5.5586

1.4 9.1171 5.9414

1.5 8.3492 6.2618

1.6 7.7267 6.5332

1.7 7.2067 6.7657

1.8 6.7627 6.9667

1.9 6.3771 7.1419

2.0 6.0378 7.2959

Table 6: Variance for K = 3

µ Vb Vv

1.1 17.3232 6.6830

1.2 15.1104 7.4809

1.3 13.5996 8.1161

1.4 12.4637 8.6301

1.5 11.5569 9.0522

1.6 10.8042 9.4032

1.7 10.1624 9.6982

1.8 9.6044 9.9488

1.9 9.1124 10.1634

2.0 8.6736 10.3487
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Table 7: Variance for K = 5

µ Vb Vv

1.1 19.5701 8.0106

1.2 17.2697 8.9438

1.3 15.6725 9.6803

1.4 14.4533 10.2712

1.5 13.4673 10.7521

1.6 12.6396 11.1485

1.7 11.9273 11.4788

1.8 11.3031 11.7568

1.9 10.7489 11.9928

2.0 10.2519 12.1948

Table 8: Variance for K = 7

µ Vb Vv

1.1 21.2769 9.0384

1.2 18.9135 10.0755

1.3 17.2534 10.8895

1.4 15.9729 11.5389

1.5 14.9280 12.0645

1.6 14.0444 12.4952

1.7 13.2792 12.8521

1.8 12.6052 13.1506

1.9 12.0042 13.4025

2.0 11.4631 13.6168

6. Conclusion

In the foregoing analysis an M/G/1 queue with K -phase vacation has been

considered. For this model the queue length distribution and the mean queue length

are obtained. An extensive numerical work has been carried out to observe the

nature of the operating characteristics.
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