
Abstract

Gradient descent algorithms perform well in convex optimization but can get tied for finding
local minima in non-convex optimization. A robust method that combines a spectral approach
with nonmonotone line search strategy for solving variational inclusion problems is proposed.
Spectral properties using eigenvalues information are used for accelerating the convergence.
Nonmonotonic behaviour is exhibited to relax descent property and escape local minima. Non-
monotone spectral conditions leverage adaptive search directions and global convergence for the
proposed spectral subgradient algorithm.
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1 Introduction

Variational inclusions are general mathematical frameworks arising naturally in many applied fields,
such as finance, control theory, mechanics and operations research, see, for instance, [4, 8, 10].
Variational inclusions expand many mathematical models including: Nonlinear equations (solving
F (x) = 0, where F is a single-valued operator), variational inequalities, equilibrium problems
and optimization (where the operator is the gradient of the objective function). One of the most
known key component in treating variational inclusions is the set-valued operator, in which the
operator assigns to each point in the domain a set of values, not just a single value. This is
common in nonsmooth optimization, where the operator might represent the subdifferential of a
nonsmooth function. Variational inclusions have been studied numerously based on monotonic and
nonmonotonic feedbacks span from fixed point iterations (use fixed point theorems to establish the
existence of the solution), iterative methods (projection and gradient methods [2,11]), regularization
methods (for nonsmooth or nonconvex scenarios such as the popular proximal point algorithm),
hybrid methods (combine monotone and nonmonotone), stochastic behaviours in the selection of
step sizes, and splitting methods (such as the Douglas-Rachford algorithm [6] where the idea is to
decompose the original problem into simpler subproblems that can be solved more easily [2, 15]).
The main problem that we are interested in, is the variational inclusion problem which is pertaining
to finding a point x ∈ H such that:

0 ∈ Tx, (1)

where T is a set-valued nonlinear map andH is an infinite-dimensional Hilbert space. As smooth set-
valued maps are treating convex functions and singletons, T in the setting of (1) can be nonsmooth
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to tackle nonconvex and (sometimes discontinuous) systems. One of the conventional and most
effective techniques to solve (1) is the classical gradient (steepest) descent method in which it
converges whenever the underlying operator is strongly monotone. The gradient descent method
can be formulated as follows:

xk+1 = xk − λkT (xk), (2)

where λk is called the step size or, as in machine learning models, the learning rate. Gradient descent
algorithms can get lost in finding local minima when solving non-convex optimization problems.
Spectral gradient methods, proposed originally by Barzilai and Borwein [1] and later developed by
Raydan for quadratic order rate of convergence, are used effectively for adaptive step-size lengths to
escape local minima for non-convex situations. It is known that spectral gradient methods converge
faster than the classical gradient descent method. A nonmonotone strategy incorporates spectral
methods to relaxing the descent condition through a nonmonotone globalization line search since it
allows for temporary increases in the objective value and maintain an overall decreasing behaviour.
The spectral step size [1] is defined by the following formula:

λk =
∥xk − xk−1∥2

⟨T (xk)− T (xk−1), xk − xk−1⟩
. (3)

Ideally, the spectral step λk is chosen to be near 1, and satisfy 0 < λmin < λmax < ∞. One advantage
of using the spectral step rather than the regular line search is the reduced computational effort.
Moreover, the inverse of (3) is a Rayleigh quotient corresponding to the average Jacobian matrix.
The main inclusion problem (1) generalizes many important mathematical formulations as special
cases which is listed as follows.

(i) Nonlinear systems: If the operator T is a single-valued operator F then problem (1) can be
reduced to finding x ∈ H such that

F (x) = 0,

where F : H → H is a continuously differentiable map and its Jacobian is not accessible.
Spectral method with nonmonotone line search have been applied to this type of nonlinear
equations by La Cruz and Raydan in [5] using merit functions to balance optimality and
feasibility conditions.

(ii) Optimization: If the operator T is a gradient of a smooth function f, i.e., T = ∇f , then
the variational inclusion (1) is basically the unconstrained optimization problem

min
x∈H

f(x),

and it is equivalent to solve the nonlinear system ∇f(x) = 0 globally. Moreover, if T is a
subgradient of a nonsmooth function g, then problem (1) is precisely the monotone inclusion
0 ∈ ∂g(x), where ∂g is the subdifferential mapping (defined in the next section).

(iii) Variational inequalities: In such variational problems where one seeks to find a vector
x ∈ H, satisfying

⟨Tx, y − x⟩ ≥ 0.

This problem is called the variational inequality. It was first studied by Stampacchia [16],
and later developed with applications in [10] and in a more general settings in [14]. When the
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constraint set in the variational inequality is dynamic and not fixed then wide formulation
will be extended, that is, quasi-variational inequalities which have many applications in game
theory where payoff or cost functions experience nonmonotonic reactions [3, 4]. Variational
inequalities have long history tied with applying dynamical systems approaches to provide
discrete-time algorithms for finding stationary points and minimizers for the objective func-
tion, see [7].

In this work we make use of the spectral step size introduced by Barzilai and Borwein in [1],
and developed later for large-scale nonlinear systems of equations by La Cruz and Raydan [5].
Studying the spectral information along with gradient directions has got much attention and in-
corporate valuable and efficient techniques for smooth/nonsmooh optimization problems (see, for
instance, [11–13] and the references therein). Extending the work of La Cruz and Raydan [5] to
variational inclusions where set-valued mappings are essential components for both smooth and
nonsmooth scenarios, is worth exploring to provide novel insights and wide frameworks to the the-
ory of variational inclusions. To the best of our knowledge, this is the first to applying the spectral
subgradient algorithm combining the nonmonotone criterion and eigenvalues information for nons-
mooth set-valued mappings in variational inclusions. Our primary motivation is to expand applying
the spectral step techniques to set-valued maps which cover smooth and nonsmooth applications

2 Background

LetH be a real Hilbert space equipped with inner product ⟨·, ·⟩ and induced norm ∥·∥ :=
√
⟨·, ·⟩. Let

T : H ⇒ H be a set-valued (multifunction) operator and its domain be denoted by dom (T ) := {x ∈
H;T (x) < ∞}. Define the graph of T by Gph (T ) :=

{
(x, u) ∈ dom (T )×H

∣∣ u ∈ Tx
}
. We say

that T is monotone mapping if ⟨x− y, u− v⟩ ≥ 0, for all (x, u), (y, v) ∈ Gph (T ). Furthermore, T is
maximally monotone if there exists no monotone operator T ′ such that Gph (T ′) properly contains
Gph (T ). The inverse of T is the set-valued operator defined by T−1 : u 7→

{
x ∈ H

∣∣ u ∈ T (x)
}
.

The set of all subgradient vectors at the point x form the subdifferential mapping ∂g(x) := {u ∈
H ; g(y) ≥ g(x) + ⟨u, y − x⟩, ∀y ∈ H} which is an example of a maximal monotone operator. The
generalized Jacobian of T at x denoted by JT (x).

2.1 Spectral methods

Spectral methods usually utilize spectral information (such as eigenvalues) of the underlying op-
erator to improve the solution convergence and steer the direction of the step process for solving
large-scale linear and nonlinear problems. The significance characteristic of spectral methods is
that applying the spectral step does not depend on the optimal function value. In many cases,
the step size λk is determined based on the spectral ratio (3). Spectral step sizes help lower the
computational cost in large-scale systems and incorporate inexact line searches. While gradient
methods might fail in global minima, the spectral method can significantly accelerate the conver-
gence. Spectral gradient methods known for their low cost computationally and their pairing with
nonmonotone line searches.

2.2 Nonmonotone line search

Traditional monotone algorithms (such as gradient descent) exhibit a monotonically behaviour in
the function value. However, with the absence of monotonicity, global convergence criteria that
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carry nonmonotonic strategies to escape local minima for general mappings might allow limited
changes in complex nonconvex nonsmooth problems. Nonmonotone methods leveraging the spec-
tral properties of the operators involved in nonconvex or nonsmooth optimization processes and
therefore its advantages can be summarized in the following three lines: faster convergence, robust-
ness and flexibility in designing the algorithm and the iteration process. Nonmonotone spectral
gradient methods, as a powerful approaches, combine ideas from nonmonotone line search tech-
niques and spectral gradient methods, to achieve reliable performance for high-dimensional com-
plex variational inclusions. In optimal control theory, the dynamics might exhibit nonmonotonic
trajectories between states and controls.

One of the most well-known monotone line search strategies is the one introduced by Grippo
et al. [9] for twice continuously differentiable objective functions in unconstrained optimization by
means of Newton’s method. This nonmonotone step length, which can be viewed as a generalization
of Armijo’s rule, is calculated by the following maximum inequality

f(xk+1) ≤ max
0≤j≤M

f(xk−j) + γλk⟨dk,∇f(xk)⟩, (4)

where M ∈ Z+ and γ > 0. The nonmonotonic behaviour in the search is caused by the maximum
term as it allows temporary increases in the optimal function values. The authors in [13] studied
numerically nonsmooth uncostrained optimization problems by applying the classical subgradient
method and a nonmonotone linesearch with the spectral step such that the objective function
assumed to be convex and continuously differentiable almost everywhere (i.e., differentiable every-
where except on sets with Lebesgue measure zero). Loreto et al. in [12] combined the spectral
choice of step length with two subdifferential-like schemes: the gradient sampling method and the
simplex gradient method. The objective function was assumed to be continuously differentiable al-
most everywhere and it is often not differentiable at minimizers (equivalently, the objective function
is locally Lipschitz continuous and differentiable on an open dense subset of Rn).

2.3 Splitting methods

A wide class of schemes called splitting methods revolves around the idea of decomposing the set-
valued operator T into two different operators T = A + B, where A is single-valued (referred to
as forward step) and B is set-valued (referred to as backward step). One of the most important
classical splitting methods to find a zero of the sum T = A + B is the so-called forward-backward
splitting method which is given as follows:

xk+1 := JλkB(xk − λkAxk), (5)

where λk > 0 for all k ∈ N, and J is the resolvent map of B. This iteration converges weakly when
A is β-cocoercive, i.e.,

∀x, y ∈ H, ⟨Ax−Ay, x− y⟩ ≥ β∥Ax−Ay∥2,

It is worth emphasizing that the cocoercivity assumption of an operator is a strictly stronger
property than Lipschitz continuity. To relax the cocoercivity assumption, Tseng [15] proposed a
modification of the forward backward splitting method, known as the forward-backward-forward
splitting iteration.

4547

“Nonmonotone Spectral Analysis for Variational Inclusions”



3 Methodology and Main Results

The geometric motivation behind using spectral information is that it is between the minimum and
the maximum eigenvalue of the average Jacobian matrix. Using the spectral step size (3) and the
Mean-Value theorem of integration, we obtain

T (xk)− T (xk−1)

xk − xk−1
=

∫ 1

0
J ((1− t)xk−1 + txk)dt. (6)

It is clear to see that the spectral step (3) is the inverse of a Rayleigh quotient of the average
Jacobian matrix (i.e., the right hand side of (6)).

3.1 The spectral subgradient algorithm

The process of combining together the spectral-step size, and the nonmonotone line search given
in (4) due to Grippo at al. [9], along with the globalization strategy [5] yield to a novel algorithm
for solving variational inclusions. The algorithm is called the spectral subgradient or the nonsmooth
spectral which uses the search direction dk = ±Tk. It is defined as follows:

Spectral Subgradient (SSG) Algorithm.

Step 0. (Initialization): Take

α0 ∈ R, γ > 0,M ∈ Z+ and x0 ∈ Rn.

Step 1. (Procedure for stopping the search): Given xk,

If ∥Tk∥ = 0, or
⟨Tk,JkTk⟩
∥Tk∥2

< ε stop.

Step 2. If αk,
1

αk
≤ ε, then set αk = δ, where δ ∈ [ε, 1/ε] for a small ε between 0 and 1.

Step 3. (Search direction): Set sgnk := sgn⟨Tk,JkTk⟩, and dk = −sgnkTk.

Step 4. (Nonmonotone global line search): Set λ = 1
αk

. If

f(xk + λdk) ≤ max
0≤j≤min(k,M)

f(xk−j) + 2γλ⟨dk,JkTk⟩ (7)

then, set λk = λ, xk+1 = xk + λkdk.

Step 5. Choose θ ∈ (0, 1), set λ = θλ. Repeat step 4.

Step 6. (Stopping criterion): Set αk+1 = sgnk
⟨dk, Tk+1 − Tk⟩

λk∥dk∥2
.

If xk+1 = xk then stop.
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Lemma 1. The spectral subgradient method is well defined.

Proof. Suppose that the algorithm does not stop, at any iteration, at step 1, then dk is a descent
direction. For γ > 0 and sufficiently small λ > 0, since f is continuous then the following inequality

f(xk + λdk) ≤ max
0≤j≤min(k,M)

f(xk−j) + 2γλ⟨Tk,Jk⟩dk

holds for all k ≥ 0. Hence, the algorithm does not run many iterations between steps 4 and 5, and
jump quickly to the update rule xk+1.

Assumption 1: Before proving the convergence we need to assume the following for the rest
of the paper:

(i) Let αk+1 be computed as in step 6, is positive.

(ii) The level set
Γ0 = {x ∈ H : 0 ≤ T (x) ≤ T (x0)}

is bounded and closed such that it contains the generated sequence {xk}.

(iii) Every accumulation point x̄ satisfies 0 ∈ ∂f(x̄) or in general 0 ∈ T (x̄).

(iv) The set-valued map T is nonsmooth.

(v) T is bounded; namely, there exists G > 0 such that ∥T∥ ≤ G.

(vi) The subdifferential ∂f is Lipschitz continuous on Γ0, i.e., there exists L > 0 such that

∥∂f(x)− ∂f(y)∥ ≤ L∥x− y∥,

for all x, y ∈ Γ0.

(vii) The generalized Jacobian matrix J (x) is non-singular for any x ∈ Γ0.

Lemma 2. Let the sequence {xk} be generated by the algorithm, then by assumption 1, and for all
k, there exist the constants c1, c2, c3 > 0 such that

∥dk∥ ≤ c1∥∂f(xk)∥, ∥∂f(xk)∥ ≤ c2∥dk∥ and ⟨T,J ⟩dk ≤ −c3∥∂f(xk)∥2.

Proof. The proof is very similar to the proof of Lemma 3.3 in [5] with slightly changes related to
the subdifferential ∂f rather than the smooth term ∇f.

The main theorem in this paper concludes that the spectral subgradient algorithm for solving
variational inclusions stops after finitely many iterations and confirms that the generated sequence
converges independently of any choice for the initial point.

Theorem 3. Consider assumption 1 is valid, then the spectral subgradient algorithm 3.1 either
stops after finitely many iterations, or the generated sequence {xk} converges such that

lim
k→∞

∥Tk∥ = 0.

Moreover, the sequence {xk} contained in Γ0 and every accumulation point satisfies the inclusion
0 ∈ T (x̄).
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Proof. Assuming Assumption 1 is true. Suppose on the contrary, that the spectral subgradi-
ent algorithm does not stop after finitely many iterations. Let the generated sequence {xk} by
Algorithm 3.1 has an accumulation point x̄. Following similar arguments of the convergence anal-
ysis of theorem 3.4 in [5], we obtain that Γ0 is closed set and therefore it is compact. Note that
min(0,M) = 0, and

0 ≤ min(k,M) ≤ min(min(k − 1,M) + 1,M), ∀k ≥ 1.

By using Lemma 2, there exist two positive numbers c1, c3 such that

∥dk∥ ≤ c1∥∂f(xk)∥

and
⟨Tk,Jkdk⟩ ≤ −c3∥∂f(xk)∥2.

Furthermore, the spectral steps are bounded by two positive numbers, i.e.,

0 < min{ε, 1
δ
} ≤ λk ≤ max{1

ε
,
1

δ
}.

Repeating similar arguments of the proof of the main theorem in [9], we obtain that

0 ∈ 2⟨T (x̄),J (x̄)⟩ = ∂f(x̄).

Since J (x) is nonsingular in Γ0, it is clear to conclude that 0 ∈ T (x̄).
Finally, the proof of the last statement follows from the first part of the main theorem in [9]

with slightly changes related to the set-valued subdifferential operators which can be investigated
in the same manner whether set-valued operators are smooth or not.

The strong global convergence of the spectral subgradient algorithm, without stopping the
search procedure in step 1, is guaranteed when the convex combination of J and its transpose is
positive definite.

Corollary 4. Assume all conditions in Theorem 3 hold and ⟨Tk,JkTk⟩ ≥ ε∥Tk∥2. If the convex
combination of the generalized Jacobian and its transpose Jcc(x) = (1−r)J (x)+rJ T (x) is positive
definite, then the spectral subgradient algorithm, either stops after finitely many iterations, or the
generated sequence {xk} converges such that

lim
k→∞

∥Tk∥ = 0.

Proof. Without loss of generality, suppose that Jcc is positive definite matrix for all x ∈ Γ0. Suppose
that the generalized Jacobian matrix Jcc has a smallest eigenvalue λmin(Jcc(x)) such that

0 < umin ≤ λmin(Jcc(xk)),

due to the continuity and compactness of Γ0. Hence, for all k ≥ 0, we have

0 < umin∥Tk∥2 ≤ λmin(Jcc(xk))∥Tk∥2 ≤ ⟨Tk,Jcc(xk)Tk⟩ = ⟨Tk,JkTk⟩.

Applying Theorem 3 on the set-valued mapping T , it follows that lim
k→∞

∥Tk∥ = 0.
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4 Conclusion

Variational inclusions provide a broad and flexible framework for modeling a variety of complex
nonconvex nonsmooth optimization and decision-making processes. They are natural extensions
to classical variational inequalities and nonlinear equations by allowing set-valued operators as
essential components. In this paper we proposed a spectral subgradient method, combining a
spectral step size to accelerate global convergence which perform better than classical steps in
gradient descent methods, and a nonmonotone globalization line search strategy to escape local
minima and relax the descent condition in every iteration but allow short increases in the search
for the objective function value. Large-scale nonconvex optimization problems, such as training
neural networks or image recovering, can benefit from the flexibility of nonmonotone spectral line
searches.

Future research directions may focus on developing efficient algorithms with normalizing the
subgradient term in either discrete-time or continuous-time gradient descent methods for the pur-
pose of relaxing the magnitude of the gradient. Normalized gradient descent is a variation of the
standard gradient descent where the gradient vector is normalized before updating the parame-
ters; meaning the step size remains the same irrespective of the gradient magnitude. One useful
advantage is to integrate nonconvex optimization landscapes in machine learning models. More
advantages can be listed; improving convergence, robustness, reduces sensitivity of the learning
rate. focuses on the direction of the gradient rather than its magnitude. In addition, expand-
ing the spectral notion to derivative-free schemes for solving variational inclusions and applying
nonmonotone line searches for complex optimization methods over manifolds.
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