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We describe a function 𝑓 as 𝐾 – Power 3. If 𝑓: 𝑉(𝐺) → {𝐾, 𝐾 + 1, . . . . . . , 𝐾 + 𝑞}constitute both 

the induced edge labelling and take 𝑓(𝑒 = 𝑦𝑧)be an injective function and express it as, then a 

graph's Heronian Mean Labelling 𝐺 = (𝑉, 𝐸) with p nodes and q lines is  

𝑓(𝑒) = ⌈3
√[𝑓(𝑦)3+(𝑓(𝑦)𝑓(𝑧))

(
3
2)+𝑓(𝑧)3]

3
⌉ or ⌊3

√[𝑓(𝑦)3+(𝑓(𝑦)𝑓(𝑧))
(
3
2)+𝑓(𝑧)3]

3
⌋ with distinct edge labels. 

In this manuscript we have proved the 𝐾– Power -3 Mean labeling behaviour of Path, Twig 

Graph, Triangular ladder 𝐿𝑛 , 𝐿𝑛 ⊙𝐾1. We have also investigated 𝐾 - Super power -3 Heronian 

Mean labelling of graghs. Also, we prove that 𝐾𝑛 is not 𝐾– Power - 3 Heronian Mean graph and 

𝐾 - Super power -3 Heronian Mean labelling of Snake related graphs like triangular, alternative 

triangular and double triangular snake graphs. 

KEYWORDS: Power - 3 Heronian Mean Graph, 𝐾 - Power 3 Heronian Mean Graph, 𝐾 - Super power -3 Heronian Mean 

graph.AMS Classification: 05C78 

 

  

1. INTRODUCTION 

      ,G V G E G  is a simple, 

connected, undirected graph with p nodes and q lines. The 

contents of this paper concise, a synopsis of definitions and 

additional material is provided. The terms used here are those 

that are defined by Harary [1]. An integer label is placed to a 

graph's edges, vertices, or both, depending on the 

circumstances. J.A. Gallian [2] published an informative 

survey on graph labeling. The labeling is referred to as a 

vertex labeling (or edge labeling) if the set of vertices (or 

edges) represents the mapping's domain. The idea of Mean 

labelling of graphs was first presented by Somasundaram and 

Ponraj [4-5]. Labelling with a Harmonic Mean was first 

proposed by S.S. Sandhya and S.D. Deepa [6]. Power - 3 

Mean Labelling was introduced by S.S. Sandhya and S.Sreeji 

[7] and their behaviour was examined. In this Mnauscript, we 

analyse K-Power 3 Heronian Mean labeling for numerous 

graphs and we establish the c oncept of K -Power 3 Heronian 

Mean labeling. 

 

 

 

Explanation: 1.1 

           A graph 
'G s with p nodes and q  lines is said to be 

considered to be  Power -3 Heronian Mean graph if the 

vertices v V can be labeled with unique labels ( )g x  from 

1, 2 ,........ , 1q  so that e y z  is labeled in each 

edge with 

3
( )

3 32

3

( ) ( ( ) ( )) ( )

( )
3

f y f y f z f z

g e

  
   
    
 
 
 

  or 

3
( )

3 32

3

( ) ( ( ) ( )) ( )

( )
3

f y f y f z f z

g e

  
   
    
 
 
 

. The line 

labels become visible. In this instance, f is referred to as 

'G s  Power - 3 Heronian Mean labelling [3]. Here, G  is 
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referred to as Power -3 Heronian Mean Graph, and f  is a 

Power - 3 Mean labeling of G . 

A graph    ,G V E with p  nodes and q  

lines is said to be K  -super power- 3 Heronian Mean graphs 

If it's feasible to assign unique labels to each of the nodes  

x v  , ( ) , 1, 2, 3,......, 1g x K K K q       

so that each line labelled e y z  is such that when 

3
( )

3 32

3

( ) ( ( ) ( )) ( )

( )
3

f y f y f z f z

g e

  
   
    
 
 
 

 or 

3
( )

3 32

3

( ) ( ( ) ( )) ( )

3

f y f y f z f z
  
   
  
 
 
 
 

. 

Consequently, the generated edge labels are unique. A graph 

where K -Super power is admitted K -super power - 3 

heronian mean graphs is the name given to heronian mean 

labelling. 

Explanation: 1.2 

 We describe a function f  as K  – Power - 3. If 

( )f V G    , 1, 2, 3 ......,K K K q   

constitute both the persuaded edge labelling and an injective 

function  f e y z  be defined as, then the Heronian Mean 

Labeling of a graph  ,G V E  employing q  lines and 

p  nodes is 

1
33 3( ) ( )

( )
2

f y f z
g e

    
  

  or  

1
33 3( ) ( )

2

f y f z    
  

with distinct edge labels [8-10]. 

Explanation: 1.3 

A Twig graph, which is a tree, is created when every 

internal vertex on a path is connected by exactly two pendent 

edges. 

Definition 1.4 

The graph known as a Triangular ladder 

, 2nT L n  . It is generated through integrating the edges 

1i iy z   for  1 1i n   , where the nodes of nL  

are iy  and  , 1iz i n   the two pathways of length 

n  in nL  are 1 2, ,. . . . . . ny y y   and 1 2, , . . . . . . nz z z .  

Definition 1.5  

The graph that results from taking n  copies of a 

graph H and one copy of a graph G , if G has order n  

connecting each vertex in the 
thi  copy of H to every other 

vertex in G is called the Corona of G   with  H , or G H

. 

2. MAIN RESULTS 

Statement: 2.1  

Path  nP   admits K - Power -3 Heronian Mean 

graph. 

Proof: 

Let the nodes and lines of  nP  be 

         ;  1      n iV P y i n   and     nE P   

   , 1 ; 1    1 }{ i i ie y y i n        

respectively. 

Define a function g  from Path's vertex set to the collection 

 , 1, 2, 3 ,......,K K K q    by, 

   1i K ig y    ;  i    fluctuates from 1 to  1n   

The edges are labelled with,  1,  K  1i ig y iy     ;    

i    fluctuates from 1 to  1n  

 It is evident that f  labels nP  as K  -Power -3 Heronian 

Mean, and as a result,  

nP  remains a K - Power - 3 Heronian Mean graph. 

Illustration: 2.2 

501- Power - 3 Heronian mean labeling of P5  

 
Figure: 2.1 

 

Statement: 2.3 

Let’s pretend the graph is G that emerges from 

linking a single edge to each of the two sides of a vertex in 

nP . G is therefore referred to as a Heronian Mean graph with 

K -Power- 3. 

Proof: 

Let G be the graph that results from connecting one edge to 

each of the two sides of a vertex in nP . 

Let 1 2 3, , , , nz zz z  be a Path in nP . Consider that the 

pendant vertices next to iz  are iy  and iw . 

It typically consists of 3n-1 edges and 3n vertices. 

Define g  in terms of   V G to  

 , 1, 2, 3, ...... ,K K K q     by, 
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  3 3ig K iy     ,  i  fluctuates from 

1 to n  

          3 2,ig Kz i         i  fluctuates from 1 to  n  

         3 1,ig w K i         i   fluctuates from 1 to  n  

     Then the edges are labelled v  with,  

 1, 3 1i ig z iz K    ,   i   fluctuates from 1 to n  

   ,  3 1i ig z K iy         i     fluctuates from 1 to n  

 , 3 2,i ig Kz w i         i   changes from 1 to  n  

Since an outcome, we acquire specific values for the 

edges. G  remains a K -Power-3 Heronian mean graph as a 

consequence. 

Illustration: 2.4 

The G5 label for 401 Power-3 Heronian Mean appears below. 

 
Figure: 2.2 

 

Statement: 2.5 

Triangular snake nT  stands K - Power-3 Heronian Mean 

graph. 

Proof: 

Consider Tn  as triangular serpent. To acquire it, each pair of 

paths is attached to a new vertex, let's say z i . 

Every edge of a nP  can be swapped out for a cyclic graph c3.  

It typically has 3n edges and 2n+1 vertices. 

Express a function g  from  nV T  to 

 1, 2, 3, ...... ,K K q    by, 

 1 ,g y K  ,

   3 4,ig Ky i  

   i  fluctuates from 2 to n   

 1 1,g z K   

    3 1ig K iz    ,  

i   fluctuates from to 1n  

Next, the labels for the induced edges are obtained by,  

 1 , 3 2,   i ig y y K i    i  fluctuates from 1 to 

1n  

     ,       3 1     i ig z iy K   i  fluctuates from 1 to  

n   

1 ,( ), 3 4i ig Ky z i       i  fluctuates from 1 to n . 

Then we obtain a distinct value for the edges. Hence Tn 

remains a K - Power -3 Heronian Mean graph. 

 Illustration: 2.6 

Following is 301 - Power-3 Heronian Mean labeled T5. 

 

Figure: 2.3 

 

Statement: 2.7 

Quadrilateral snake nQ  stays as a K- Power-3 Heronian 

Mean graph. 

Proof: 

Let nQ  represent Quadrilateral snake. 

It is obtained by joining each pair of a path's vertices to a 

pair of additional vertices, let's say   i iy and w . 

A cyclic structure C5, which typically contains 3n-2 vertices 

and 4n-4 boundaries, is capable of changing every edge in a 

nP  graph. 

Describe a function 

   : , 1, 2, 3, ......,ng V Q K K K q     by, 

  ,ig y K i   , i  fluctuates from 1 

to n   

   4 1 ,ig Ky i     i fluctuates from 2 to n  

   ,z  ig K   i  fluctuates from 1 

to n  

  ,z 4 5ig K i       i  fluctuates from 

1 to n  

  2,ig w K   , i  fluctuates from 1 

to n   

  4 3,ig w K i     i  fluctuates from 2 to n  

The induced edge labels are subsequently given by, 

   ,  4 1   ,z  i ig y K i    i  differs from 2 to 

n  
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 ,  4 3 ,i ig Ky w i     i  varies 

from 1 to n  

1 ,( ), 4 2i ig Kz z i      i  varies from 1 to 1n  

1, 4 1( )i ig w z K i      i  varies 

from 1 to 1n   

It is obvious that the label f  is a K -Power-3 Heronian 

Mean.  

Thus, Qn  is a graph of K  -Power-3 Heronian Mean. 

 Illustration: 2.8 

202 - Power -3 Heronian Mean labeling Q5 is shown below. 

 

Figure: 2.4 

 

Statement: 2.9 

Alternative triangular  nA T  stays as a K - Power-3 

Heronian Mean graph 

Proof: 

Let  nA T  be an Alternative triangular Graph. 

Describe a function 

    : , 1, 2, 3,......,ng V A T K K K q     by, 

    2 2,ig y K i      i differs from 1 to n  

  4 3 ,zig K i    i  differs from 1 to n  

Edges are labeled by, 

    ,, 4 1i ig Ky z i    i  fluctuates 

from 1 to n  

 1 , 4 2 ,i ig z y K i     i  fluctuates from 1 to 

1n  

1 ,( ), 2 1i ig Ky y i     i  fluctuates 

from 1 to 1n  

Clearly, f is a K - Power-3 Heronian mean labeling. Hence 

 nA T remains a K - Power -3 Heronian Mean graph. 

Illustration: 2.10 

55 - Power-3 Heronian Mean labeling A(T3) is shown 

below. 

 
Figure: 2.5 

 

Statement: 2.11 

For every n , Comb 1nP K  is a K  - Power-3 

Heronian Mean graphs. 

Proof: 

Assume that 1nP K  is a Comb that is obtained by joining 

every vertex in nP  with a full graph 1K . It typically has 2n-

1 edges and 2n vertices. 

Describe a function 

   1: , 1, 2, 3,......,ng V P K K K K q      

by,  

 

  2 1ig y K i    i  fluctuates from 1 to n  

   z , 2 1ig K i    i  fluctuates from 1 to n  

Then the induced edge labels are 

 1, 2 1,i ig K iy y       i  differs from 1 to 1n  

   2z,  1 ,i ig y K i     i  differs from 1 to n  

Then we obtain a dissimilar value for the edges. 

Hence 1nP K  remains a K - Power-3 Heronian Mean 

graph. 

Example: 2.12 

75 - Power-3 Heronian Mean labeling 5 1P K  is shown 

below 

 
Figure: 2.6 

 

Statement: 2.13 

Ladder   nL   stays as a K -Power-3 Heronian Mean 

graph 
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Proof: 

Denote a ladder graph by   nL . In the graph   nL , let iy , i  

fluctuates from 1 to  n  and z i  i  differs from 1 to n  be the 

vertices of two paths with length n . Participate in iV  and Ui. 

It typically has 3n-2 edges and 2n vertices 

 State a function 

   : , 1, 2, 3,..... ..,ng V L K K K q      

by, 

   3 3 ,ig Ky i       i  fluctuates from 1 to n  

  ,z 3 2ig K i      i  fluctuates from 1 to n  

Next, the labels for the induced edges are obtained by, 

 , 3 3,zi ig y K i     i   fluctuates from 1 to n  

  1,  3 2,i ig K iy y      i  fluctuates from 1 to n  

1,   3 1,(z z )i ig K i      i  fluctuates from 1 to 

n  

It is evident that f  has a K -Power-3 Heronian Mean label. 

nL  remains a K -Power-3 Heronian Mean graph as a result.  

Illustration 2.14 

301 - Power-3 Heronian Mean labeling L4 is show below 

 
Figure: 2.7 

 

Statement: 2.15 

The triangular snake ( 2 )nT n   stays as a K  -Super 

power-3 Heronian Mean graph for any K . 

Proof 

Let  
,

z 1,

11

i

i

i

y i

varies from to n

varies from to n





   be the vertices and 

 ,

1

1

,

12

i

i

e i

a i

varies from to n

varies from to n





  be the edges 

Initially, the vertices are labelled as follows. 

For 

1( z ) 4( 1 1) changes from to nf K i i  

 

For  1( ) 4 1 13 vaf ries fi rom t ny K i o    

Then the induced edges labels are 

For 2*( ) 4 1 12 vaf ries fi rom t ne K i o    

For  

2

2 4 3

2
*( )

2 4 2

2

1 2 2

K i
i is odd

f ta varies from

i

o ni
K i

i s even

 


 
 







 

Therefore, the edge labels are all distinct. Hence the 

triangular snake ( 2)nT n  remains a K -super power -3 

heronian mean graph for any K. 

Statement: 2.16 

The double triangular snake   ( 2)nD T n   stays as a 

K - super power -3 heronian mean graph for any K  

Proof: 

Let  1 1 1z , 1 , , 1 1i n y w i n     be the 

vertices and  1 1 1, 1 , , 1 2( 1)e i n a b i n    

be the edges. 

Initially, the vertices are labelled as follows: 

For    1 8 2f z K i    i  fluctuates from

1 to n  

For  1 8 4f y K i     i  fluctuates from 

1 1to n   

        1 8 4f w K i       i  fluctuates from 

1 1to n   

Next, the generated edge labels are  

For 

 1 6 1 1* 8 varf ies fromi i nK oe t    

 1

4 2
*

4 5

K i i is odd
f a

K i i is even

 


 
 

1 2 2varies from to ni   

 1

4 2
*

4 2

K i i is odd
f b

K i i is even

 


 
    

1 2 2varies from to ni   

Therefore, the edges labels are all distinct. Hence the double 

triangular snake   ( 2)nD T n  remains a K - super 

power -3 heronian mean graph for any K  

Statement: 2.17 

The alternative triangular snake   ( 2)nA T n  stands 

for K - super power -3 heronian mean graph for any K  

Proof:  
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Let  1 1, 1 , , 1 / 2z i n y i n     

function as the vertices  

and  1 1, 1 1, , 1e i n a i n       be 

the edges 

Initially, the vertices are labelled as follows.  

For   1 2 2f z K i   i fluctuates from 1 to n  

For  1 4 3 3f y K n i     i fluctuates from

1 / 2to n  

Next, the generated edge labels are  

For 

 1 2 1 1* 2 varf ies fromi i nK oe t    

For 

1

2 2 3 4

2
*( )

2 2 3
1

6

2

n

K n i
i is odd

f a i chang
K n i

i is even

se from to

  


 
  



 

1

4 2
*( ) 1

4 2

K i i i is odd
f nb i

K i i
varies f m

i is eve
ro t

n
o

 
 

 

 

Therefore, the edges labels are all distinct. Henc the 

alternative triangular snake   ( 2)nA T n  remains a K

- super power -3 heronian mean graph for any K . 

 

CONCLUSION 

 The study of labeled K power- 3 heronian graphs are 

significant because of their wide range of uses. Not every 

graph has a K Power - 3 Heronian Mean. Examining the 

graphs that allow for Power 3 Heronian Mean Labeling is 

quite fascinating. Enough visuals are used to demonstrate the 

resulting results, improving comprehension. K- Super power 

-3 Heronian labeling does not satisfy for all graphs. 

Analyzing comparable outcomes for several additional K-

Super power- 3 Heronian Mean Graphs is feasible. 
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