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The formalisms for the analysis of the dynamics of slim inviscid accretion discs in a (also, 

non-Newtonian) gravitational potential are here developped; the role of the horizontal 

pressure and that of the entropy gradients are to be characterised. The adiabatic perturbations 

of the velocity are studied: the paradigms of the Lagrangian perturbations of the velocity are 

implemented. 

The perturbations of the slim disc is studied in the Lagrangean formalism of adiabatic 

perturbations of the velocities. The new conditions on the Eulerian variation of the 

gravitational potential are outlined. The equations of the transient phenomena are written. 
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1 INTRODUCTION 

The slim accretion disc model [1] is investigated. 

The slim disc is made of a mixture of gas and radiation, and 

it stays in an (also, non-Newtonian) gravitational potential. 

The dynamics of the disc is ruled after the gradient of the 

entropy. 

The aim of the present paper is to analyse the known transient 

phenomena and to write the new ones. 

From [2], the inviscid accretion discs are studied in a 

gravitational potential. 

The case of ’close binary’ potential is also considered. 

The analysis is further brought to viscous accretion discs. 

The viscous fluid is apt to e studied according to the protocol 

of Lagrangean perturbations [5]. The known paradigms to 

outline the transient phenomena are demonstrated from [6]: 

the trnasient-growth regime and the decay are described. 

The viscous accretion disc in the Kerr potential is depicted 

from [8]. 

The equations of motion of the inviscid perturbed fluid are 

taken from [9]. 

In the present paper, the mechanisms outlined in [9] are 

further implemented and developped. The case of the 

perturbed inviscid fluid in a gravitational potential is 

considered; the Lagrangean formulation of the adiabatic 

perturbations of the velocities is made use of. Within the 

framework of a General-Relativistic potential, the equations 

of motions are newly split according to the order of the 

Eulerian perturbations and the constraints are found; in 

particular, the perturbations are written on a gravitational 

potential Φ as well, as specified at the proper orders. The 

condition on the Eulerian components of the variations of δΦ 

are newly found. 

The paper is organised as follows. 

In Section 1, the main motivations of the study are indicated. 

In Section 2, the slim accretion disc is reviewed. 

In Section 3, the features of the inviscid accretion discs are 

recalled. 

In Section 4, the properties of the viscous accretion discs are 

summarised. In Section 5, the the formalism of Lagrangean 

perturbations of the velocities in a viscous fluid is 

recapitulated. 

In Section 6, some of the paradigms to outline transient 

phenomena in the known cases are revised. 

In Section 7, the viscous accretion disc in the Kerr potential 

are described. In Section 8, the perturbed inviscid fluid is 

newly analysed. The Lagrangean perturbations are used. The 

equations of motions are split after the adiabatic perturbations 

of the velocities. The new conditions found on the Eulerian 

variation of the gravitational field are specified. 

The prospective investigations and methodologies are 

exposed in Section 9. 

The stress-energy tensor of the viscous slim disc is reported 

in Appendix A. 
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2 THE SLIM ACCRETION DISC 

In [1], the slim accretion disc made of a mixture of perfect gas 

and radiation in a pseudo-Newtonian potential generated after 

the mass M¯ is analysed. It is described within the General-

Relativistic framework, endowed with a pseudoNewtonian 

potential ΦA(r,z) as 

, (1) 

being R = (r2 + z2)1/2 and RG a gravitational radius. 

The The description is taken on the equatorial plane. 

The angular velocity Ωk of Keplerian, circular orbits in the 

pseudo-Newtonian potential is calculated as 

 . (2) 

The self-gravity of the disc is neglected. 

The viscosity of the disc is due only to shear viscosity, and 

the bulk viscosity is considered as negligible. Its dynamics is 

described after the entropy gradient 

 (3) 

being T the temperature, S the entropy, with the pressure P 

satisfying an equation of state f(P,T;ρ) = 0. 

The momentum equation in the r direction is written as 

. (4) 

The momentum equation in the φ direction is calculated after 

the viscous torque w evaluated as an inner boundary condition 

as 

M˙ (l − l0) = w(r) − w(RG) = 4πr2HαP                               (5) 

being lk the specific angular momentum of the radial 

component of the gravitational force. 

The velocity of the sound in the medium is worked out after 

the derivative 

 . 

 

3 INVISCID ACCRETION DISCS 

The dynamics of inviscid accertion discs is here recalled from 

[2]. 

The flow in a cold inviscid disc is supersonic. 

The equations of motion with a point-mass M potential are 

written as 

 (6) 

At a fixed temperature T, the pressure gradient is written as 

 (7) 

The orbital time scale Ω0 is obtained as 

 (8) 

with velocity r0Ω0. 

 

3.1 Accretion in the potential of close binary 

The case is here studied, of the accretion gas admitting a non-

vanishing angular momentum with respect to the accreting 

object. The phenomenon here considered is accretion in a 

’close binary’ consisting of a compact object of mass M1 and 

a ’main sequence companion’ of mass M2 (i.e. a white dwarf, 

a neutron star or a blackhole). 

The frequency Ω is given as 

 Ω2 = G(M1 + M2)/a3. (9) 

For a non-corotating gas, the Roche potential [4] Chapter 4 

ibidem is here used as 

 ,

 (10) 

where ri is the distance from the object i, and ς the distance 

from the rotation axis. 

 

4 VISCOUS ACCRETION DISC 

The viscous accretions discs are here revised after [2]. 

The surface density Σ is defined as 

, (11) 

being ρ0 the ’density at the midplane’, and H0 the ’scaleheight 

at the midplane’. The conservation of mass is written as 

. (12) 

The equation of motion in the φ azimuthal component is 

reconducted to 

 (13) 

being Fφ the azimuthal component of the viscous force. 

  (14) 

Eq. (14) is consistent if ν is independent of z. 

The angular momentum balance is written from [3], [4] as 

Ω);

 (15) 

The rhs of Eq. (15) is the divergence of the ’viscous angular 

momentum flux’. From Eq. (12) and from Eq. (15), the 

following equality is obtained 

 . (16) 

Eq. (16) represents the thin disc diffusion equation. Let M˙ be 

the mass flux at any point of the disc, as 

.

 (17) 

All the quantities which affect the behaviour of the disc are 

encoded in the viscosity. 

5 Lagrangian perturbations of the velocities in viscous fluid 

From [5], the passage from stable regime to turbulent regime 

is implemented from the density ρ, pressure P and the 
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kinematic viscosity ν from the definition of the derivatives of 

the velocity vector ~v as 

 (18) 

being 

 (19) 

 n=0 

being b(n) the n-th order term., and δ the parameter related with 

the initial velocity perturbation. The initial conditions are 

given as 

 

~b(0)(R~;0) = R,~ (22a) 

b(n)(R~;0) = 0 ∀n > 0. (22b) 

 

6 THE TRANSIENT PHENOMENA 

From [6], the viscous stress tensor σjk is defined for the 3-

velocity ~v as 

 (23) 

For a potential ΦU as          (24) 

 

The dynamics is investigated: 

i) the density fluctuations and the vertical-velocity 

fluctuations do not induce radial motion and do not cause 

azimuthal motion; 

ii) ’driven general acoustics’ generalise initial 

perturbation radial structure; iii) the initial perturbations of 

the radial structure are found via iiia) the derivative of the 

velocity with respect tot he pressure vp
′ , iiib) the derivative of 

the density with respect to the pressure ρp
′ , which give raise 

to a transient growing periods and a decay. 

Transitions are present in the dynamics. 

The acoustic energy consists in the kinetic energy in the 

vertical velocity disturbances. 

The compression energy is due to the density disturbances. 

Let Ea(t;α) be the total disturbance acoustic energy of the disc. 

The ratio Ea(T)/Ea(0) is used to analyze the transient growth. 

                                                                    
1 The Kerr potential is one obtained from 

the General-Relativistic spacetime of a rotating 

blackhole 

The role of α is to decrease the magnitude of the transient 

growth. The time corresponding to the maximum amplitude 

is studied after the initial conditions on the radial velocity. 

The initial conditions on the radial velocity are posed as 

A(r) = eiπ/4e−(r−r0)2/∆f (25) 

being ∆f the standard deviation of the Gaussian distribution of 

the velocities. 

 

7 VISCOUS ACCRETION DISC IN THE KERR 

POTENTIAL 

The viscous accretion disc in the Kerr potential 1  is here 

studied after [8]. 

7.1 Equation of state 

The equation of state is given as a polytropic relation between 

the ’vertically integrated pressure’ P and the surface (rest)-

mass density ΣN from [7] as 

 (26) 

being K ≡ K(s) the constant that takes into account the entropy 

of the flow and the polytropic index Γ is one of a two-

dimensional flow as 

. (27) 

The adiabatic speed of sound aad is calculated as 

; (28) it is rewritten as a function of the modified 

accretion rate M 

c 2
ad = hN + M˙ −1/N(r | u 

|)1/Ni (29) 

being 

 (30) 

with M the accretion mass. 

For a fixed mass rate M˙ and a fixed Γ, the modified mass rate 

M measures the entropy of the flow. 

For a fixed K and a fixed Γ, the modified mass rate takes into 

account the accretion rate. 

The specific enthalpy µis written as a function of the adiabatic 

sound speed aad as 

µ ≡ (1 − Na2
ad)−1. (31) 

 

8 EQUATIONS OF MOTION OF A PERTURBED 

INVISCID FLUID 

The equations of motion of a perturbed inviscid fluid is 

followed from [9]. The equations of motions of an inviscid 

fluid are written in the General-Relativistic form with 

implementing the gradients to their covariant expressions as 
2 

2 the Einstein notation of summation over saturated indices is here 

applied. 

with  

∇ ·~v = 0. 

5.1 The laminar flow 

The laminar flow (plane Chouette flow) is discussed as 

follows. Perturbations of the viscid flow are written as 

(20) 

 (21) 
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ρ∂t
2ξµ+2ρvν∇ν∂tξµ+ρ(vν∇ν)2ξµ−∇µ(γρ∇νξν)+∇µp∇νξν−∇νp∇µξν+ρ

ξν∇ν∇µΦ+ρ∇µδΦ = 0 

(

32) The equations of motion of the adiabatic perturbations of 

the velocities are here specified as 

∂tξµ = 0. 

The perturbations are taken 

(33) 

, (34a) 

∆ρ = δρ − ∇σ(ρξσ), (34b) 

∆p = δp + ξσ∇σp. (34c) 

From Eq. (34a), Eq. (refeqy1) is specified for adiabatic 

perturbations of the velocities as 

ρ(vν∇ν)2ξ − ∇µ(γρ∇νξν) + ∇µp∇νξν − ∇νp∇µξν + ρξν∇ν∇µΦ + 

ρ∇µδΦ = 0. 

(

35) After implementing Eq. (34b) and Eq. (34c), Eq. (35) is 

written as containing the different orders as 

(δρ)(vν∇ν)2ξ−∇µ(γ(δρ)∇νξν)+∇µ(δp)∇νξν−∇ν(δp)∇µξν+(δρ)ξν∇ν∇

µΦ+(δρ)∇µδΦ = 0                                                            (36) 

and 

[−∇σ(ρξσ)](vν∇ν)2ξ−∇µ(γ[−∇σ(ρξσ)]∇νξν)+∇µ[ξσ∇σp]∇νξν−∇ν[ξσ

∇σp]∇µξν+[−∇σ(ρξσ)]ξν∇ν∇µΦ+[−∇σ(ρξσ)]∇µδΦ = 0. 

(37) 

After considering the different orders in Eq. (36), the different 

equations are obtained 

(δρ)(vν∇ν)2ξ−∇µ(γ(δρ)∇νξν)+∇µ(δp)∇νξν−∇ν(δp)∇µξν+(δρ)ξν∇ν∇

µΦ+(δρ)∇µδΦ = 0 

(38) 

and  

(δρ)(vν∇ν)2ξ ≃ 0 (39) 

and 

 (δρ)∇µδΦ ≃ 0. (40) 

In particular, the new (non-Newtonian) condition Eq (40) is 

found for any (also, non-Newtonian) potentials. 

 

9 DISCUSSION 

The time behaviours of thin polytropic accretion discs under 

particular axisymmetric perturbations are discussed in [10]. 

More in detail, both time independent perturbations and time-

dependent perturbations are considered. Numerical von 

Neumann methods are recapitulated in [11]. 

A. The stress-energy tensor of the viscous slim disc 

The stress-energy tensor for a single-component fluid 

including viscosity and heat flux is specified after the entropy 

flux S, uµ the position 4-vector of the local rest frame, vµ the 

velocity 4-vector and the viscous tensor κµν. The viscous 

tensor τµν is defined as 

κµν = −ζΘHµν − 2ηπµν (41) 

being σµν the shear tensor, η the shear viscosity coefficient, ζ 

the bulk viscosity coefficient, and Θµν = ∇νuν. The tensor Hµν 

is defined as 

Hµν = uµuν + gµν (42) 

and represents the ’expansion of the fluid worldlines’. The 

stress-energy tensor of the disc is therefore written as 

 (43) 

It is specified after the choice of the gravitational potential 

calculated after the metric tensor gµν. 

In the analysis of [8], it is specified after the metric tensor of 

the Kerr blackhole spacetime. 
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