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Chickenpox is an infectious disease that causes an itchy, blister-like rash on the skin and can 

spread through bodily fluids and body contact. This study presents a mathematical model for 

the transmission dynamics of chickenpox among children by considering the impact of 

vaccination and treatment. The qualitative analysis of the model reveals that the model has two 

equilibrium points, namely: the chickenpox-free and endemic equilibrium points. The disease-

free equilibrium point is globally asymptotically stable whenever the basic reproduction number 

is less than unity ( 10 R ) and the endemic equilibrium point is globally stable whenever the 

reproduction number is greater than unity ( 10 R ). The normalized forward sensitivity index 

is also used to obtain the critical factors responsible for the transmission of chickenpox in the 

population. Furthermore, it reveals that parameters with negative indices will reduce the 

transmission of chickenpox when increased.  The qualitative analysis of the model is supported 

by numerical simulation 
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1. INTRODUCTION 

Chickenpox known as varicella is a highly 

contagious vaccine-preventable disease caused by the initial 

infection with Varicella Zoster Virus (VZV), a member of the 

herpes virus family. The disease results in a characteristic 

skin rash that forms small itchy blisters, which eventually 

scab over (CDC 2011a). It usually starts on the chest, back 

and face. It then spreads to the rest of the body; the rash and 

other symptoms such as fever, tiredness and headaches 

usually last five to seven days. Complication may 

occasionally include pneumonia, inflammation of the brain 

and bacterial skin infections. The disease is usually more 

serious in adults than in children. 

Chickenpox is an airborne disease which easily 

spread via human-to-human transmission typically through 

coughs and sneezes of an infected person. The incubation 

period is 10 – 21 days, after which the characteristic rash 

appears (CDC 2011b). Chickenpox occurs in all parts of the 

world. In 2013, there were 140 million cases of chickenpox 

and shingles worldwide (Wang 2005). Before routine 

immunization, the number of cases occurring each year was 

so far to the number of people born. Since immunization, the 

number of infections in the United States has decreased 

nearly 90%. In 2015, chickenpox results in 6400 death 

globally down from 8900 in 1990. Death occurs in about 1 

per 60,000 cases. Chickenpox was not separated from 

smallpox until the late 19th Century (Atkinson and Williams 

2011). In 1888, its connection to shingles was determined. 

The first document use of the term chickenpox was in 1658. 

Various explanations have been suggested for the use of 

‘chicken’ in the name, one being the relative mildness of the 

disease. Since its introduction in 1995 in the United States, 

the varicella vaccine has resulted in a decrease in the number 

of cases and complication from the disease. It protects about 

70-90 percent of people from the disease with a greater 

benefit for severe disease (Wang et al., 2005). 

Routine immunization of children is recommended 

in many countries (Leeuwen 2015) and immunization within 

three days of exposure may improve outcome in children. 

Treatment of those infected may include calamine lotion to 

help with itching keeping the finger nails short to decrease 

injury from scratching and the use of paracetamol 

(acetaminophen) to help with fevers. For those at increase 

rate of complication, antiviral medication such as acyclovir is 

recommended. 

Mathematical modeling is an important tool used by 

researchers in studying the transmission dynamics of 

infectious disease in the human population (Adepoju and 

Ibrahim 2024a; Abimbade et al., 2024; Adepoju and Olaniyi 

2021; Olaniyi 2022) and quite a few studies have investigated 
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the dynamical spread of chickenpox in the population (Ali et 

al., 2009; Ofori et al., 2011; Stephen et al., 2014). Ali et al 

(2009) described the clinical manifestation of laboratory 

findings and frequency of complications in adult chickenpox 

patients admitted in the hospital. Their result showed that 

chickenpox in adults’ cause’s severe systemic manifestations 

leading to high frequency of complications with increased 

mortality rate, particularly in older age group and in smokers 

who develops varicella pneumonia and require mechanical 

ventilation. Ofori et al (2011) develop an SIR mathematical 

model on the spread of varicella in Ghana. Their model 

focused on the spread of chickenpox at the initial stages of 

the infection when the infected persons are absent and when 

they are present, taking into consideration birth and natural 

mortality rates. Carrington et al (2011) concluded that 

congenital varicella syndrome, maternal varicella-zoster 

virus pneumonia and non-neonatal varicella infections are 

associated with serious fetomaternal morbidity. Shrim et al 

(2012) worked on the management of varicella infection in 

pregnancy. Recommendations were made toward 

immunizing all non-immune women as part of pre-pregnancy 

and postpartum care and vaccination should not be 

administered in pregnancy. Stephen et al (2014) developed a 

deterministic mathematical model for transmission of 

chickenpox incorporating vaccination. The effect of some 

sociological factors on the outbreak of chickenpox disease 

was investigated by Rahman and Kuddus (2014). Their 

results indicated that infectious disease such as chickenpox 

outbreak is associated with the sociological factors, 

particularly education levels and religious affiliation had 

independent influence on parent’s infection to vaccinate 

children. Corberans et al (2018) developed a deterministic 

mathematical model for the transmission of chickenpox 

incorporating vaccination for the human population.  

In another development, Katherine et al (2018) 

examined a mathematical model on the role of vaccination 

and treatment on chickenpox transmission dynamics while 

Steiner et al (2018) proposed an epidemiological model for 

the dynamics of chickenpox transmission with periodic 

infection rate. Their results indicated that vaccines are 

excellent way to preventing many people from contracting 

chickenpox. Okolo and Abu (2019) stressed on the 

mathematical model of chickenpox transmission dynamic of 

using both effect of vaccination and human contact 

interaction on the transmission of chickenpox virus. 

Furthermore, Agbata et al (2019) developed and analyzed a 

mathematical model for the control of chickenpox with 

vaccination and treatment strategy and Bright et al (2019) 

investigated a deterministic mathematical model for 

transmission dynamic of chickenpox incorporating 

vaccination. Umar et al (2020) presented a deterministic 

epidemiological model incorporating the method of control 

adopted by national chickenpox and leprosy programme in 

Damaturu-Yobe and Nigeria at large while Zhang et al (2020) 

studied the mathematical model for the dynamic of 

chickenpox virus transmission with non-UK individuals. The 

effect of routine vaccination on the dynamical spread of 

chickenpox in Hungary was carried out by Karsai et al 

(2020). Anebi et al (2021) investigated the effect of 

vaccination strategy using Adomian decomposition method 

and Sanyoos et al (2023) stressed on mathematical model 

depicting the dynamics of chickenpox transmission by 

incorporating precautionary measure. 

It is pertinent to state that this study considers the 

effects of vaccination and treatment of children affected with 

chickenpox in the human population. The organization of the 

work is as follows: Section 2 presents the full description of 

model. The analysis of the model is carried out in Section 3, 

while in Section 4, the numerical simulations of the system 

are performed. Section 5 wraps up the work with concluding 

remarks. 

 

2. MODEL FORMULATION 

The total population at time )(t , donated by )(tN , is 

subdivided into six mutually exclusive compartments of 

susceptible individual )(tS , vaccinated individual )(tV , 

exposed individual )(tE , infected individual )(tI , treated 

individual )(tT , recovered individual )(tR  respectively. 

The total human population is obtained as  

)()()()()(V)()( tRtTtItEttStN  (1) 

Susceptible individuals are recruited into the population at a 

rate .  The effective contact rate with the probability of 

human being infected by the chickenpox virus per population 

is donated by
N

SI
. The susceptible population increases as 

the vaccine’s effectiveness wanes at a rate V . The 

population is further reduced by vaccination at birth and 

natural mortality at the rates  and  . Then, the rate of 

change of susceptible individuals is given by  

V)1( 


  S
N

SI

dt

dS
 (2) 

A fraction of the susceptible human got vaccinated at a rate

 . The population in this compartment is further reduced 

when the natural death occurs at a rate   and vaccine wanes 

at a rate . Then, the rate of change of vaccinated individuals 

is given by  

V)(
V

 
dt

d
   (3) 

As more members of the susceptible class become infected, 

the number of exposed people rises proportionately at a rate

N

SI
. The class reduces due to progression of exposed 

individual to active chickenpox infection at a rate . The 

population is further reduced by natural mortality at a rate 

. Then, the rate of change of exposed individuals is given by  
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E
N

SI

dt

dE
)( 


   (4) 

The population of infected individual increases based on the 

progression of exposed infected individual to active infection 

at a rate E . The population reduces as a result of treatment 

at a rate . The population in this class is further decreased 

as a result of disease induced death and natural death at the 

rates  and  . Then, the rate of change of infectious 

individual is given as  

IE
dt

dI
)(     (5) 

The treatment compartment increases as a result of 

progression from the infected compartment at a rate I . The 

population reduces due to natural death at a rate   and 

recovery at a rate  . Then, the rate of change of treatment 

individual is given as  

TI
dt

dT
)(      (6) 

The population of recovered individuals increases as a result 

of progression from the treatment class at a rate T . The 

population is further decreased by natural death at a rate  . 

Then, the rate of change of recovered individuals is given as  

RT
dt

dR
      (7) 

Thus, the mathematical model describing the dynamical 

spread of chickenpox among children is given as follows 



































RT
dt

dR

TI
dt

dT

IE
dt

dI

E
N

SI

dt

dE

V
dt

dV

VS
N

SI

dt

dS

















)(

)(

)(

)(

)1(

 (8) 

The state variables (8) are subject to the initial conditions: 

0)( tS , 0)( tV , 0)( tE , 0)( tI , 0)( tT and 

0)( tR

Figure 1. Schematic diagram of the Chickenpox model 

 

Table 1. Description of Variables  

Variable Description 

)(tS  Susceptible Individual 

)(tV  Vaccinated Individual  

)(tE  Exposed Individual 

)(tI  Infected Individual 

)(tT  Treated Individual 

)(tR  Recovered Individual 

 

Table 2. Description of Parameters of the Chickenpox 

Model 

Parameter Description 

  Recruitment rate 

  Fraction of recruitment who are 

vaccinated  

  Contact Rate 

  Natural death rate 

  Rate at which vaccine wanes 

  Progression rate from vaccinated to 

infected class 

  Progression rate from exposed to 

infected 

  Treatment rate 

  Recovery rate 

 

3. ANALYSIS OF THE CHICKENPOX MODEL 

3.1 The Invariant  region 

Theorem 1: Let ),,,,,( RTIEVS be the solution of (8) with 

initial condition in a feasible region , then 
6

 R  is 

positively invariant. 

Proof:  It is clear from the first six equations of the system (8) 

that 

IN
dt

dN
     (9) 

so that,  
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N
dt

dN
      (10) 

Then, by standard technique it follows that  

)1()0()( tt eeNtN 



    (11) 

If 



)0(N , then 




)(tN . Thus the region   is 

positively invariant. Furthermore, if



)0(N , then the 

solution enters   in finite time. Hence the feasible region 

  attracts all the solutions in
6

R  . 

Since the region is positively-invariant and attracting, then it 

is enough to investigate the dynamics of the mathematical 

model (8) in the feasible region. Hence, the chickenpox 

model (8) is mathematically and epidemiologically 

meaningful (Hethcote 2000). 

3.2 Positivity of solutions 

Theorem 2: The solutions of the system (8) with non-negative 

initial conditions, 0)( tS ; 0)( tV ; 0)( tE ;

0)( tI  0)( tT ; 0)( tR  remain non-negative for all 

time 0t . 

Proof: The first compartment of the system (8) gives rise to   

0 S
N

SI

dt

dS



   (12) 

which when solved using standard technique yields  

0
)(

)(
exp)(

0


















 tdw
wN

wI
tS

dt

d t




  (13) 

This implies that

0,0
)(

)(
exp)0()(

0










  ttdw
wN

wI
StS

t




 

Using the same approach, the remaining state variables, 

0)( tV ; 0)( tE ; 0)( tI  0)( tT ; 0)( tR are 

non-negative for all time 0t . 

3.3 Existence of equilibria and stability analysis 

The existence of the equilibrium points (steady state 

solutions) of the autonomous system (8) is determined 

analytically and the stability analysis is also investigated in 

this section 

3.3.1 Chickenpox-free equilibrium 

The chickenpox-free equilibrium of the model (8), denoted 

by 0 , is given by 

 
















0,0,0,0,,
)(

)(

,,,,, 0000000









 RTIEVS

 (14) 

The basic reproduction number is the average number of new 

cases of secondary infection caused by a single infectious 

individual in the population of susceptible. It is an important 

threshold under which the incidence of chickenpox will 

persist or die out in the population. The threshold parameter 

0R is calculated using the approach of (Driessche and 

Watmough 2002; Diekmann et al., 1990; Adepoju and 

Ibrahim 2024a) where the infected compartments are 

considered at disease-free equilibrium. It can be deduced 

from the model (8) that 






































EI

E
N

SI

tI

tE

dt

d





)(

)(

0)(

)(
 (15) 

from which the transmission matrix F  and transition matrix 

V are obtained at 0 respectively, by,  

F

 





















00

)1(
0





 

and    

















 0
V  

Therefore, the basic reproduction number of the system (8), 

denoted by ),( 1

0

 FVR  where   is the spectral radius 

of the product of 
1FV  is obtained as  

 









)1(
0R   (16) 

Lemma 1: The chickenpox-free equilibrium point, 0 , of the 

model (8) is locally asymptotically if 10 R   and unstable if 

10 R  

The implication of Lemma 1 from the epidemiological point 

of view, is that the dynamical spread of chickenpox can be 

effectively controlled in the population whenever 10 R , if 

the initial size of the sub-population of the system (8) are 

within the point of attraction of 0 . 

3.3.2 Global Stability of Chickenpox-free 

equilibrium 

Theorem 3: The chickenpox-free equilibrium denoted 0 is 

globally asymptotically stable whenever 10 R . 

Proof: Considering the infectious compartments, the proof is 

based on comparison theorem as applied in (Augusto and 

Gumel 2010; Erinle-Ibrahim et al., 2022, Adepoju et al., 

2024c). The infected compartments of the model (8) is 

written in the form  
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












































I

E
F

N

S

I

E

dt

dI
dt

dE

1  (17) 

where F and V are transmission and transition matrices 

respectively obtained in section (3.3.1). Since )()( tNtS 

for all 0t , then it follows from (17) that  

  



























I

E
VF

dt

dI
dt

dE

  (18) 

Now, knowing that all the eigenvalues of   IVF  all 

have negative real parts, it follows that the differential 

inequality (18) is stable whenever 10 R . Consequently, 

   0,0)(),( tItE as t . Thus by comparison 

theorem (Huo and Feng 2013), it follows that

   0,0)(),( tItE . Then 

   0,0,0,0,0,0)(),(),(),(),(),( tRtTtItEtVtS as

t .Hence the chickenpox-free equilibrium, 0 , is 

globally asymptotically stable when 10 R  

3.3.3 Endemic equilibrium 

Let  ******** ,,,,, RTIEVS  be the endemic 

equilibrium of the system (8). At steady states, let the force 

of infection be
N

I
 *

. Then solving the system (8) 

simultaneously at steady state yields 
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kkkk

k
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kkkk

k
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kkk

k
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 (19) 

Substituting *I  from (19) into * and simplifying gives 









 1* 0

23

R
kk


    (20) 

It can deduced from (20), one possible condition for which 

positive * can be obtained: if 0;1 320  kkR . Hence 

chickenpox will persist in population provided .10 R  

3.3.4 Global stability of endemic equilibrium 

Theorem 4: The endemic equilibrium point of the system (8) 

is globally asymptotically stable whenever the threshold 

parameter, 0R , is greater than unity. 

Proof:  The global asymptotic stability of the endemic 

equilibrium is proved following the approach of (Adepoju 

and Olaniyi 2021; Abimbade et al., 2024; Adepoju et al., 

2024b). 

Consider the Lyapunov function   RRL 6:

defined by  
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The time derivative of (21) gives 
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Since 


*N

, then simplifying (24) gives  
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Consequently, the derivative of the continuously 

differentiable function L  is negative semi definite, that is, 

0L , then the function L  is a Lyapunov function. 

Therefore, 0
dt

dL
, provided 

****** ,,,,, RRTTIIEEVVSS  . Then 

by Lasalle’s invariance principle (Lasalle 1976), the largest 

invariance set for which, 0
dt

dL

 

is the singleton set }{ *  

which implies that the endemic equilibrium point of the 

chickenpox model is globally asymptotically stable.  

3.3.5 Sensitivity Analysis 

The influence of the parameters of the chickenpox model 

related to the basic reproduction number is examined through 

sensitivity analysis using the normalized forward sensitivity 

index. The sensitivity analysis is very important do 

discovering how best the dynamical spread of chickenpox can 

be curbed by studying the critical factors responsible for its 

transmission (Adepoju et al., 2024). By definition, the 

normalized forward sensitivity index of a variable is the ratio 

of the relative change in the variable to the relative change in 

the parameter (Chitnis et al., 2008; Rois et al., 2021). The 

normalized forward sensitive indices of the basic 

reproduction number 0R , relative to its parameter P , is given 

by,          

0

00

R

P

P

RR

P 





                                                        (27) 

The sensitivity indices of the parameters that are associated 

with the basic reproduction number is calculated using (27) 

and the results are presented in Table 3 

 

Table 3. Sensitivity indices of the basic reproduction 

number relative to its parameters 

Parameter    

Value 

Sensitivity 

indices 

                   

Source 

            0.2         1.000  Agbata et 

al.,(2019) 

            0.03         -0.002 Ofori (2011) 

Agbata et al., 

(2019) 

            0.05         0.656 Assumed 

            0.01         1.000 CDC (2004), 

Agbata et al., 

(2019) 

            0.5        -0.838 Ogabi (2009) 

  

4. NUMERICAL SIMULATION 

Numerical simulations of the chickenpox model were carried 

out using MATLAB computing software in order to 

corroborate the analytical solutions established in section 3 

and the results are presented graphically. 

 

Figure 2.  Effects of   and  on the threshold 

parameter 0R  

 
Figure 3. Effect of varying values of vaccination waning 

rate on vaccinated individuals 

 

The influences of the transmission rate,   and progression 

rate  on the basic reproduction number are depicted in 

Figure 2. It is observed that both  and  has corresponding 

increase on the threshold parameter 0R .  This implies from 

epidemiological viewpoint that there would be persistence of 

chickenpox in the population if appropriate measures to 

curbing the disease are not strictly adhered to. Figure 3 

presents the effect of varying values of the rate at which 

vaccine wanes,  on the vaccinated individuals. It is 

observed that as the value of  increases, the population of 

vaccinated individuals’ decreases and this might be as a result 

of weak immune system. The dynamics of the effect of the 

transmission rate,   on the susceptible population is 

presented in Figure 4. It can be deduced that as the value of 

the transmission rate,   increases, there is a proportionate 

decrease in the population of the susceptible. Ultimately, this 

means that adequate policy needs to be put in place so as to 

reduce the surge in the transmission of the disease. Figure 5 

presents the global asymptotic stability of exposed 

individuals around the disease-free equilibrium. It is observed 

that regardless of the initial size of the population of the 

exposed individuals’, the population will converge to the 

chickenpox-free equilibrium. This implies that chickenpox 

can be reduced in the population. Figure 6 shows impact of 

the global stability of exposed individual in the basin of 

endemic equilibrium. It can be deduced that regardless of the 

initial size of the population, the exposed individuals’ will 

converge to a unique endemic equilibrium.  
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Figure 4. The impact of varying values of transmission 

rate,  on the susceptible population 

Figure 5. Global stability of exposed individuals around 

chickenpox-free equilibrium 

 

Figure 6. Global stability of exposed individuals around 

chickenpox-present equilibrium 

 

5. CONCLUSION 

This study is concerned with the mathematical assessment of 

the dynamical spread of chickenpox with vaccination and 

treatment among children using a system of ordinary 

differential equation. The model is divided into six mutually 

exclusive compartments of Susceptible, Vaccinated, 

Exposed, Infected, Treated and Recovered individuals 

respectively. A qualitative analysis of the model is performed 

to show that solution of the model is positive and bounded, 

implying that the model formulated is mathematically and 

biologically meaningful. An analytical solution of the model 

revealed that the model possesses two equilibrium points; the 

disease-free and endemic equilibrium points. The basic 

reproduction number was obtained using the next generation 

matrix method. By applying the comparison test approach, 

the disease-free equilibrium was shown to be globally 

asymptotically stable and the global asymptotic stability of 

the endemic equilibrium point was established using 

quadratic Lyapunov function. It was observed that 

chickenpox will persist in the children population when

10 R . The influence of the critical parameters influencing 

the transmission of chickenpox was obtained using the 

normalized forward sensitivity index and it was deduced that 

parameters with positive indices will have increase on the 

basic reproduction number while those with negative indices 

will have significant reduction on the basic reproduction 

number when increased. Efforts should be intensified by 

healthcare practitioners and policy makers to reducing the 

value of parameters with positive indices so as to reduce the 

transmission of chickenpox in the population. Additionally, it 

is crucial to state that the values of the parameters used in this 

study are obtained from existing literature while the value of 

 is hypothetically chosen. Real time data of chickenpox can 

be used to fit the model for a realistic study. 
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