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Improvements in computer technologies continue to shape the presence and the future of 

modernization, driven by the need for faster and more efficient processing, most chip 

manufacturers have abandoned the single-processor system and turned attention to other 

hardware technologies like the multicore system. However, should the baby (single-processor 

system) be thrown away with the bathwater?  Parallelization which defines the era of the 

multicore if properly exploited on single-processor systems can improve performance. This 

work exploits thread-level parallelism on the single processor system. This work uses thread-

level parallelism to sort randomly generated grid jobs. The method randomly generates grid jobs 

which are then sorted into groups based on the computing requirements of the job. Using fuzzy 

rules, the sorting is done with a range of threads from one to eight in steps of two. For each set 

of sorting, the time of completion is recorded. The analysis shows that increases in the thread 

improve performance on the single processor system. However, as the number of jobs increases, 

the execution time also increases for all threads – indicating a general performance decline.  The 

analysis also showed a steady improvement in performance as the number of threads increased 

from one to two and between two and four threads. However, the improvement leveled off at 

four threads and six threads and degraded between six threads and eight threads. This indicates 

that as the number of threads increases, the single processor system poses a bottleneck to 

performance due to context switches and other overheads. We therefore recommend that for 

thread-level parallelization on the single-processor systems, the number of threads should not 

be more than four.  

KEYWORDS: Grid Computing, Parallel sorting, Single-processor system, Threads, Multi-threading.     

 

1.0 INTRODUCTION   

The overarching goal in computing has been dominated by 

speed-up and increased performance or throughput.  Speed-

up has been exploited using various computing designs while 

different computing models and programming paradigms 

have been exploited to achieve increased performance. 

Threads offer a platform for enhanced throughput and have 

been exploited for parallelism on different platforms.   

The single-processor systems have long been touted as haven 

reached their performance threshold, and system designers 

and manufacturers have turned to more performance-

promising models like the multicore technology which offers 

parallel processing. However, parallelisation using threads 

presents another window of performance increase sought 

after by computer enthusiasts, scientists and researchers.   

Implementation of threads in performance speed-up can also 

be challenging as too many threads can throw up 

communication bottlenecks and overheads while too few 

threads would lead to the underutilization of resources.   

This work examines the impact of threads-level parallelism 

on the performance of a single processor system. The work 

implements an algorithm that uses threads to sort randomly 

generated grid jobs  

1.1 Background   

Speculations about the inadequacies of single-processor 

systems meeting the computing needs of a fast-changing and 

data-driven world have long been discussed with the 
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conclusion that the single-processor system has reached its 

performance threshold (Amdahl, 1967; Bridges et al., 2008; 

Sirhan, 2020) prompting system designers and manufacturers 

to adopt a better performancepromising model (Kalla, 2004; 

Wang et al., 2007b, Pandey, 2019). However, interests in 

performance enhancement in computing continue to 

dominate research interests (El-Moursy, 2005; Ungerer, 

2002; & Wellein, 2006)  and parallelization using thread 

presents another window of increased performance and 

presents a lifeline to single processor systems.  The use of 

threads has severally been exploited  (Madriles et al., 2009; 

Pandey, 2019). Threads provide a platform for enhanced 

throughput and have been exploited for parallelism in 

different research (Chen, 2002; Haji, 2021; Sharif, 2020)  this 

trend is expected to continue as new parallelization effort 

emerges (Vachharajani et al., 2005).   

This work exploits a varying range of threads to sort a 

randomly generated grid job. The aim is to ascertain the 

performance-improving effect of threads on a single 

processor system.   

  

2.0 REVIEW OF LITERATURE  

Performance Improvement Measures in Single-Processor 

Design  

The exponential demand for performance improvement in 

computing doesn’t only necessitate hardware improvement 

but also an improved programming practice  (Eck, 2021; 

McCool, 2008) However, it has been demonstrated that 

sequential programs do not optimize system utilization during 

execution (Stone, 2010) necessitating a rethink in the 

programming paradigm (Debbi, 2019). Parallel programming 

has been exploited variously to attain system optimization 

(Zhong, 2007; Asanovic, 2009; Debbi, 2019; & Valencia, 

2019;). This is the motivation for the use of threads in this 

work.  

The need for processor speed, efficiency and optimal 

performance has motivated several researchers in computing 

(Debbi, 2019; Kalla, 2004; Schauer, 2008; Valencia, 2019; & 

Wang et al., 2007).  Researchers had sought an increase in 

gate density on the integrated circuit technology (Lacoe, 

2008; Nair, 2002) thereby increasing component and total 

costs. Therefore, the need to adequately utilize the 

capabilities of the technology became imperative. This 

prompted  (Olukotun et al., 1996)  to undertake a study that 

revealed the possibility of implementing a single-chip 

multiprocessor on the same area as a superscalar, the work 

also revealed that where the need for parallelism is negligible, 

performance between the two technologies almost evens out.    

Another effort to improve processor performance led 

(Sprangle et al., 2002; Sprangle & Carmean, 2002) to exploit 

the deep pipelining method on a Pentium ® 4 processor-like 

architecture. They observed that branch misprediction 

inhibited performance and stressed the need for branch 

prediction and fast branch recovery. Before this,  (Bae et al., 

2003) designed the Single Chip Programmable Platform 

(SPP) that employed multithreading on the RISC processor to 

improve concurrent processing and communication in the 

platform-based design of microprocessors. The platform 

integrates hardware blocks used in the design of embedded 

system chips.   

Similarly, to achieve a fine-grain thread-level parallelization, 

Thread-level speculation (TSL) was exploited by (Prabhu, 

2003) to enhance performance on seven spec CPU2000 

benchmark applications. The work presented various 

methods for manual parallelization and attained a speedup of 

110% and 70% respectively for TSL parallelization on four 

floating points applications and three integer applications.    

  Noting the importance of optimization of the serial code in 

improving performance (Wellein, 2006)  evaluated the 

performance of the single processor systems and its impact 

on architecturedependent implementations on the Lattice 

Boltzmann kernel, the researchers also shed light on the 

relevance of commodity off-the-shelf (COTS) architecture 

and Vector processors. Likewise, (Inoue, 2007)  implemented 

the aligned-access (AA-sort) parallel sorting algorithm, the 

method eliminates unaligned memory access to increase 

performance. However, this work was targeted at the multi-

core systems.   

 Following the success of previous researchers on 

parallelization using threads,  (Sharif, 2020) proposed and 

designed a professional integrated operating system 

performance measuring system to measure processes and 

threads. The system was capable of controlling the CPU, 

measuring execution time, CPU time, user time, kernel time 

and context switches, the system was applied to several 

processing environments.    

2.1.0 The GRID  

The Grid is a computing platform that delivers computing 

services from various independent computing sites to users in 

disparate locations, the paradigm requires large-scale sharing 

and proper service delivery to meet user’s needs. To attain 

these requirements, the Grid encourages the integration and 

aggregation of different federating computing units to create 

a virtual organization of grid networks so that it can deliver 

the Quality of Service required by customers (Foster, 2000; 

Foster & Kesselman, 1999; Wieczorek, 2009).     

 2.1.1   Sorting Requirement on the Grid  

Sorting is a fundamental activity in computing, improving 

efficiency in sorting will directly improve performance and 

throughput. Researchers have exploited several methods 

aimed at improving sorting. (Debbi, 2019) assessed the 

possibility of parallelizing sorting algorithms and compared 

improvements between various sorting algorithms. (Kristo, 

2020) exploited a distributed sort algorithm that uses a 

learning model of the CDF of data empirically, then applied 

a deterministic sorting algorithm to establish a total sort order 

and achieved a 3.38 improvement. Other researchers have 

exploited other methods to improve sorting  (Norollah, 2019; 
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& Vasanth et al. 2019). This work aims at exploiting 

parallelism in sorting grid jobs.  

 The importance of sorting is fundamental to the computing 

grid and has inspired researchers to exploit various methods 

to improve efficiency (Barthel, 2023; Rajeswari, 2019). 

Improvement in grid sorting is a necessity (Coleman, 2022) 

for the grid to attain its large-scale aggregation, sharing and 

quality of services. This demand necessitates the exploitation 

of thread for efficiency in the execution of processes on the 

grid.   

2.2.0 Grid Scheduling Algorithms  

Jobs on the computer Grid are of disparate requirements, they 

are submitted by users with varying needs and grid sites for 

processing jobs are also made up of varying computing 

capacities. These requirements may include heuristics, 

network bandwidth, blind matching and QoS (Agarwal, 

20011; Kobra, 2007; Nasir et al., 2012). Several 

parallelisation attempts have been made to parallelize grid 

scheduling (Abraham, 2016; Abraham et al., 2015a, 2015b, 

2021b, 2021a). In consideration of these factors, this 

implementation seeks to improve the performance of grid 

jobs on a single processing system using a random sorting 

algorithm.    

The remainder of this article is as follows: section 3 discusses 

the experimental design, and the flowchart detailing the sort 

criteria for the work. Section 4 discusses the experiments, 

Tests, Data and Analysis of data on the single processor 

system using varying numbers of threads. Section 5 discusses 

the conclusion. 

   

3.0.0 EXPERIMENTAL DESIGN  

This experiment was designed to sort jobs into various files 

based on some attributes of the job. Sorting was done in 

parallel using Java threads - java threads offer basic 

programming parallelism and also possess the ability to scale 

up with an increased number of threads and processors. The 

system executes the primary process of sorting different 

numbers of jobs using one thread, two threads, four threads, 

six threads and eight threads.   

In the execution, a defined range of jobs are generated with 

random attributes, these sets of jobs are then sorted into 

various files based on the attributes of the jobs. The various 

attributes of a job are ID, SIZE, PLATFORM and 

PRIORITY.  

Sorted jobs are written into four different files representing 

each set of jobs grouping (i.e. priority group). The four output 

files for sorted jobs hold jobs with VERY HIGH PRIORITY, 

HIGH PRIORITY, MEDIUM PRIORITY and LOW 

PRIORITY.  

The ranges of jobs generated and used for the experiment are 

from 10000 to 800000 (i.e. from ten thousand to eight 

hundred thousand) in steps of 50000 (except the first step 

which was 40000). For each step in the range of jobs 

generated, the program used one thread, two threads, four 

threads, six threads and eight threads to do the sorting in 

parallel.   

Hence, the numbers of jobs randomly generated and sorted 

are 10000, 50000, 100000, 150000, 200000, 250000, 300000, 

350000, 400000,450000, 600000, 650000, 700000, 750000, 

800000 and the numbers of threads used for each execution 

are one, two, four, six and eight threads.  

The number of jobs generated and sorted in each execution is 

equally divided by a division algorithm among the number of 

threads.   

For each set of executions, the corresponding time of 

execution (computer system time in Milliseconds) is written 

to a file. Every step of the number of jobs in the experiment 

is executed ten times by each set of threads, and then the 

average for each set of jobs by each set of thread(s) is 

calculated.   

The output file for timing has the following: Number of Jobs, 

Number of Thread, Time of execution by each thread, Total 

time of execution- which is a total of all the time used by each 

thread in the execution.  

CONFIGURATION OF MACHINES USED FOR THE 

EXPERIMENT  

The configuration of the computer on which the experiment 

was executed is as follows:   

A Single-processor system, Pentium4, CPU speed 3.00GHz, 

RAM size 1.5 GB, running on Microsoft Windows XP 2002 

version.  

Sorting Criteria  

The sorting criteria are based on Job Size, Computational 

Requirement and Deadline. Various combinations of these 

attributes are used to determine the group to sort jobs into. 

very large jobs with high computational requirements and 

critical deadlines are sorted into group A. Large jobs with 

high computational requirements but with medium critical 

deadlines are sorted to group B, Medium size jobs with 

medium computational requirements without critical 

deadlines are sorted to group C while the rest are sorted to 

group D. Fig.1 shows the stripped-down version flowchart for 

the Job Sorting criteria.   

Sorting algorithm  

Job sorting algorithm  

Check size_of_job, Computational requirement and Deadline 

requirement of jobs  

3. If Job.Size =Very_Large & Comp.Req = 

Very_High and  

Deadline=Critical   

4. Then sort the job to GroupA  

5. End_if  

6. If Job.Size =Large & Comp.Req=Medium 

&Deadline= MediumCritical     

7. Then sort the job to GroupB  

8. End_if  

9. If Job.Size=Medium & Comp.Req =Medium & 

Deadline=Not_Critical  
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10. Then sort the job to GroupC  

11. Else  

 13.   sort job to group D   

14. End_while  

 16. Stop.  

  

    

3.1.0 Flow Chart for the Job Sorter  

                   
 

4.0 EXPERIMENTS, TESTS, DATA AND ANALYSIS 

OF THE EFFECTS OF PARALLELISM USING 

DIFFERENT THREADS  

This set of tests was aimed at how an increase in threads 

affects the performance of the sorting algorithm on a single 

processor system.  

 (i) The effects of threading on the Single processor 

machine  

Result:  There was a very strong correlation coefficient 

between the results among all the threads.  the result for single 

processor systems reveals a minimal improvement as the 

number of threads increases. The trend levelled up at four 

threads.  Table 1 shows the number of jobs sorted and the 

average completion time by the different threads.  
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Table 1 Thread Completion times for the Single Processor system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This test shows that for each set of jobs sorted, one thread 

takes more average time in sorting. This is followed by two 

threads, four threads then six threads. From the bar graph 

(Figure 2) much cannot be deciphered between four threads, 

six threads and eight threads.    

Also, from the line graph in Figure 3, all the threads exhibited 

the same characteristics, it shows a steady increase in 

execution time as the number of jobs increases for all the 

threads. Though this was to be expected, the difference 

between the number of threads and the execution was not 

decipherable – indicating that the impact of threading on the 

single processor systems is minimal using this method of 

analysis. Hence, we shall employ another analytic measure.   

 
Figure 2 Bar chat representing completion times 

Jobs coun  OneThrea  TwoThrea  FourThre a SixThread  EightThreadAverag 

10000 284.09 167.55 109.55 116.55 133.55  

50000 211.45 196.09 201.91 212.82 198.82  

100000 470.18 535.36 400.55 430.45 394.91  

150000 751.36 816.73 619.45 644.91 671.91  

200000 1211.64 941.82 934.64 821.09 776.82  

250000 1477.36 1134.91 1175 998.55 995.55  

300000 1534.09 1477.18 1321 1337.91 1379.09  

350000 1982.91 1662 1451.82 1378.91 1569.36  

400000 2083.91 2154.82 1707.36 1998.45 1652  

450000 2261.36 2276.91 2022.91 2018.55 1850.82  

500000 2500 2195.91 2022.82 2294.09 2186.18  

550000 2671.91 2308.27 2340.73 2276.82 2225.55  

600000 3004.18 3068.09 2515.64 2444.64 2505.73  

650000 3195.91 3277 3092.27 2808.18 2765.45  

700000 3541.09 3375.09 2964.36 3123.45 3076.82  

750000 3799.82 3481.45 3461.55 3412.09 3410.27  

800000 3950.27 3836.82 3643.64 3701.64 3437.55  
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Figure 3 Line chat representing completion time by threads 

   

(ii) Performance improvement by threads on the Single 

processor machine using percentage measure   

Since the line graph could not indicate much difference in 

performance between the various threads, we computed the 

average performance in percentage. Figure 4 indicates the 

performance of each thread in percentage. One thread used 

35% average time to sort the range of jobs. Two threads used 

a 21% average time to sort the range of jobs. Four threads 

used 14% average time to sort the range of jobs. Six threads 

used 14% average time to sort the range of jobs while eight 

threads used 16% average time to sort the range of jobs.   

This shows that there was a significant performance gain 

between one thread and two threads, and there was also a 

significant performance improvement between two threads 

and four threads. But there was no performance improvement 

between four threads and six threads and finally, there was a 

performance degradation between six threads and eight 

threads. This indicates that beyond  

4 threads, there was no longer any improvement. Also, as the 

number of threads increases, the single processor system 

becomes a bottleneck due to context switches and other 

overheads. We therefore propose that for thread-level 

parallelisation in single processor systems, the number of 

threads should not be more than four.  

 

                                 
 

Performance Difference between Successive Threads in 

Percentage  

We computed the percentage difference (improvement) 

between successive threads. See  Table 2. There was a 5.7% 

difference in improvement between two threads and one 

thread. There was an 8.8% difference in improvement 

between four threads and two threads. The percentage 

difference in improvement between six threads and four 

threads was negative; this is because the general performance 

degraded from this point. For 8 threads, we computed the 

  
Figure 4. Percentage performance by different threads      

1 ThreadAvg 
% 35 

ThreadsAvg 2 
% 21 

4 ThreadsAvg 
% 14 

ThreadsAvg 6 
% 14 

ThreadsAvg 8 
% 16 

ThreadAvg 1 

ThreadsAvg 2 

4 ThreadsAvg 

6 ThreadsAvg 

8 ThreadsAvg 
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performance improvement of 4 threads over 8 threads and 

that of 6 threads over 8 threads because both performed 

better. For this, the improvements were approximately the 

same (See Figure 5). This indicates that beyond 4 threads, 

there was no longer improvement in performance.  

 

    

Table 2 Performance Difference between successive Threads in Percentage 

1ThrdAggAvg  2Thrd&1Thrd  4Thrd&2Thrd  6Thrd&4Thrd  8Thrd&6Thrd  8Thrd&4Thrd  

  34931.53  32906  29985.2  30019.1  29230.38   

 5.7986  8.8762  -0.1131  2.6274  2.5173  

  

                                 
Figure 5 Difference in percentage improvement between successive threads 

  

5.0  CONCLUSION  

The result and analysis show that increases in the thread 

improve performance on the single processor system. 

However, the rate of increase in execution time against the 

number of jobs increased for all the threads – indicating that 

as the number of jobs increased, the general performance 

decreased.  

 The analysis also showed a steady improvement in 

performance as the number of threads increased from one to 

two and between two and four threads.   

However, the improvement leveled off at four threads and six 

threads and degraded between six threads and eight threads.   

This indicates that as the number of threads increases, the 

single processor system poses a bottleneck to performance 

due to context switches and other overheads.   

We recommend that for thread-level parallelization in single 

processor systems, the number of threads should not be more 

than four for the sorting of grid jobs.  

Future Thoughts  

This work concentrated on the single processor system, in the 

future, we will exploit the same method on different sets of 

multicore systems, and then compare the performance against 

the single processor system.  
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