

4577 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

 Volume 12 Issue 11 November 2024, Page no. – 4577-4585

 Index Copernicus ICV: 57.55, Impact Factor: 8.316

 DOI: 10.47191/ijmcr/v12i11.05

Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor

System

Dr. Abraham Tomvie Goodhead1, Kikile Vincent Samuel 2

1Computer Science Department, Faculty of Science, Niger Delta University, Wilberforce Island, Bayelsa State, Nigeria.
2Mechanical Department, Faculty of Engineering, Federal University Otuoke, Bayelsa State, Nigeria

ARTICLE INFO ABSTRACT

Published Online:

20 November 2024

Corresponding Author:

Dr. Abraham Tomvie

Goodhead

Improvements in computer technologies continue to shape the presence and the future of

modernization, driven by the need for faster and more efficient processing, most chip

manufacturers have abandoned the single-processor system and turned attention to other

hardware technologies like the multicore system. However, should the baby (single-processor

system) be thrown away with the bathwater? Parallelization which defines the era of the

multicore if properly exploited on single-processor systems can improve performance. This

work exploits thread-level parallelism on the single processor system. This work uses thread-

level parallelism to sort randomly generated grid jobs. The method randomly generates grid jobs

which are then sorted into groups based on the computing requirements of the job. Using fuzzy

rules, the sorting is done with a range of threads from one to eight in steps of two. For each set

of sorting, the time of completion is recorded. The analysis shows that increases in the thread

improve performance on the single processor system. However, as the number of jobs increases,

the execution time also increases for all threads – indicating a general performance decline. The

analysis also showed a steady improvement in performance as the number of threads increased

from one to two and between two and four threads. However, the improvement leveled off at

four threads and six threads and degraded between six threads and eight threads. This indicates

that as the number of threads increases, the single processor system poses a bottleneck to

performance due to context switches and other overheads. We therefore recommend that for

thread-level parallelization on the single-processor systems, the number of threads should not

be more than four.

KEYWORDS: Grid Computing, Parallel sorting, Single-processor system, Threads, Multi-threading.

1.0 INTRODUCTION

The overarching goal in computing has been dominated by

speed-up and increased performance or throughput. Speed-

up has been exploited using various computing designs while

different computing models and programming paradigms

have been exploited to achieve increased performance.

Threads offer a platform for enhanced throughput and have

been exploited for parallelism on different platforms.

The single-processor systems have long been touted as haven

reached their performance threshold, and system designers

and manufacturers have turned to more performance-

promising models like the multicore technology which offers

parallel processing. However, parallelisation using threads

presents another window of performance increase sought

after by computer enthusiasts, scientists and researchers.

Implementation of threads in performance speed-up can also

be challenging as too many threads can throw up

communication bottlenecks and overheads while too few

threads would lead to the underutilization of resources.

This work examines the impact of threads-level parallelism

on the performance of a single processor system. The work

implements an algorithm that uses threads to sort randomly

generated grid jobs

1.1 Background

Speculations about the inadequacies of single-processor

systems meeting the computing needs of a fast-changing and

data-driven world have long been discussed with the

https://doi.org/10.47191/ijmcr/v12i11.05

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4578 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

conclusion that the single-processor system has reached its

performance threshold (Amdahl, 1967; Bridges et al., 2008;

Sirhan, 2020) prompting system designers and manufacturers

to adopt a better performancepromising model (Kalla, 2004;

Wang et al., 2007b, Pandey, 2019). However, interests in

performance enhancement in computing continue to

dominate research interests (El-Moursy, 2005; Ungerer,

2002; & Wellein, 2006) and parallelization using thread

presents another window of increased performance and

presents a lifeline to single processor systems. The use of

threads has severally been exploited (Madriles et al., 2009;

Pandey, 2019). Threads provide a platform for enhanced

throughput and have been exploited for parallelism in

different research (Chen, 2002; Haji, 2021; Sharif, 2020) this

trend is expected to continue as new parallelization effort

emerges (Vachharajani et al., 2005).

This work exploits a varying range of threads to sort a

randomly generated grid job. The aim is to ascertain the

performance-improving effect of threads on a single

processor system.

2.0 REVIEW OF LITERATURE

Performance Improvement Measures in Single-Processor

Design

The exponential demand for performance improvement in

computing doesn’t only necessitate hardware improvement

but also an improved programming practice (Eck, 2021;

McCool, 2008) However, it has been demonstrated that

sequential programs do not optimize system utilization during

execution (Stone, 2010) necessitating a rethink in the

programming paradigm (Debbi, 2019). Parallel programming

has been exploited variously to attain system optimization

(Zhong, 2007; Asanovic, 2009; Debbi, 2019; & Valencia,

2019;). This is the motivation for the use of threads in this

work.

The need for processor speed, efficiency and optimal

performance has motivated several researchers in computing

(Debbi, 2019; Kalla, 2004; Schauer, 2008; Valencia, 2019; &

Wang et al., 2007). Researchers had sought an increase in

gate density on the integrated circuit technology (Lacoe,

2008; Nair, 2002) thereby increasing component and total

costs. Therefore, the need to adequately utilize the

capabilities of the technology became imperative. This

prompted (Olukotun et al., 1996) to undertake a study that

revealed the possibility of implementing a single-chip

multiprocessor on the same area as a superscalar, the work

also revealed that where the need for parallelism is negligible,

performance between the two technologies almost evens out.

Another effort to improve processor performance led

(Sprangle et al., 2002; Sprangle & Carmean, 2002) to exploit

the deep pipelining method on a Pentium ® 4 processor-like

architecture. They observed that branch misprediction

inhibited performance and stressed the need for branch

prediction and fast branch recovery. Before this, (Bae et al.,

2003) designed the Single Chip Programmable Platform

(SPP) that employed multithreading on the RISC processor to

improve concurrent processing and communication in the

platform-based design of microprocessors. The platform

integrates hardware blocks used in the design of embedded

system chips.

Similarly, to achieve a fine-grain thread-level parallelization,

Thread-level speculation (TSL) was exploited by (Prabhu,

2003) to enhance performance on seven spec CPU2000

benchmark applications. The work presented various

methods for manual parallelization and attained a speedup of

110% and 70% respectively for TSL parallelization on four

floating points applications and three integer applications.

 Noting the importance of optimization of the serial code in

improving performance (Wellein, 2006) evaluated the

performance of the single processor systems and its impact

on architecturedependent implementations on the Lattice

Boltzmann kernel, the researchers also shed light on the

relevance of commodity off-the-shelf (COTS) architecture

and Vector processors. Likewise, (Inoue, 2007) implemented

the aligned-access (AA-sort) parallel sorting algorithm, the

method eliminates unaligned memory access to increase

performance. However, this work was targeted at the multi-

core systems.

 Following the success of previous researchers on

parallelization using threads, (Sharif, 2020) proposed and

designed a professional integrated operating system

performance measuring system to measure processes and

threads. The system was capable of controlling the CPU,

measuring execution time, CPU time, user time, kernel time

and context switches, the system was applied to several

processing environments.

2.1.0 The GRID

The Grid is a computing platform that delivers computing

services from various independent computing sites to users in

disparate locations, the paradigm requires large-scale sharing

and proper service delivery to meet user’s needs. To attain

these requirements, the Grid encourages the integration and

aggregation of different federating computing units to create

a virtual organization of grid networks so that it can deliver

the Quality of Service required by customers (Foster, 2000;

Foster & Kesselman, 1999; Wieczorek, 2009).

 2.1.1 Sorting Requirement on the Grid

Sorting is a fundamental activity in computing, improving

efficiency in sorting will directly improve performance and

throughput. Researchers have exploited several methods

aimed at improving sorting. (Debbi, 2019) assessed the

possibility of parallelizing sorting algorithms and compared

improvements between various sorting algorithms. (Kristo,

2020) exploited a distributed sort algorithm that uses a

learning model of the CDF of data empirically, then applied

a deterministic sorting algorithm to establish a total sort order

and achieved a 3.38 improvement. Other researchers have

exploited other methods to improve sorting (Norollah, 2019;

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4579 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

& Vasanth et al. 2019). This work aims at exploiting

parallelism in sorting grid jobs.

 The importance of sorting is fundamental to the computing

grid and has inspired researchers to exploit various methods

to improve efficiency (Barthel, 2023; Rajeswari, 2019).

Improvement in grid sorting is a necessity (Coleman, 2022)

for the grid to attain its large-scale aggregation, sharing and

quality of services. This demand necessitates the exploitation

of thread for efficiency in the execution of processes on the

grid.

2.2.0 Grid Scheduling Algorithms

Jobs on the computer Grid are of disparate requirements, they

are submitted by users with varying needs and grid sites for

processing jobs are also made up of varying computing

capacities. These requirements may include heuristics,

network bandwidth, blind matching and QoS (Agarwal,

20011; Kobra, 2007; Nasir et al., 2012). Several

parallelisation attempts have been made to parallelize grid

scheduling (Abraham, 2016; Abraham et al., 2015a, 2015b,

2021b, 2021a). In consideration of these factors, this

implementation seeks to improve the performance of grid

jobs on a single processing system using a random sorting

algorithm.

The remainder of this article is as follows: section 3 discusses

the experimental design, and the flowchart detailing the sort

criteria for the work. Section 4 discusses the experiments,

Tests, Data and Analysis of data on the single processor

system using varying numbers of threads. Section 5 discusses

the conclusion.

3.0.0 EXPERIMENTAL DESIGN

This experiment was designed to sort jobs into various files

based on some attributes of the job. Sorting was done in

parallel using Java threads - java threads offer basic

programming parallelism and also possess the ability to scale

up with an increased number of threads and processors. The

system executes the primary process of sorting different

numbers of jobs using one thread, two threads, four threads,

six threads and eight threads.

In the execution, a defined range of jobs are generated with

random attributes, these sets of jobs are then sorted into

various files based on the attributes of the jobs. The various

attributes of a job are ID, SIZE, PLATFORM and

PRIORITY.

Sorted jobs are written into four different files representing

each set of jobs grouping (i.e. priority group). The four output

files for sorted jobs hold jobs with VERY HIGH PRIORITY,

HIGH PRIORITY, MEDIUM PRIORITY and LOW

PRIORITY.

The ranges of jobs generated and used for the experiment are

from 10000 to 800000 (i.e. from ten thousand to eight

hundred thousand) in steps of 50000 (except the first step

which was 40000). For each step in the range of jobs

generated, the program used one thread, two threads, four

threads, six threads and eight threads to do the sorting in

parallel.

Hence, the numbers of jobs randomly generated and sorted

are 10000, 50000, 100000, 150000, 200000, 250000, 300000,

350000, 400000,450000, 600000, 650000, 700000, 750000,

800000 and the numbers of threads used for each execution

are one, two, four, six and eight threads.

The number of jobs generated and sorted in each execution is

equally divided by a division algorithm among the number of

threads.

For each set of executions, the corresponding time of

execution (computer system time in Milliseconds) is written

to a file. Every step of the number of jobs in the experiment

is executed ten times by each set of threads, and then the

average for each set of jobs by each set of thread(s) is

calculated.

The output file for timing has the following: Number of Jobs,

Number of Thread, Time of execution by each thread, Total

time of execution- which is a total of all the time used by each

thread in the execution.

CONFIGURATION OF MACHINES USED FOR THE

EXPERIMENT

The configuration of the computer on which the experiment

was executed is as follows:

A Single-processor system, Pentium4, CPU speed 3.00GHz,

RAM size 1.5 GB, running on Microsoft Windows XP 2002

version.

Sorting Criteria

The sorting criteria are based on Job Size, Computational

Requirement and Deadline. Various combinations of these

attributes are used to determine the group to sort jobs into.

very large jobs with high computational requirements and

critical deadlines are sorted into group A. Large jobs with

high computational requirements but with medium critical

deadlines are sorted to group B, Medium size jobs with

medium computational requirements without critical

deadlines are sorted to group C while the rest are sorted to

group D. Fig.1 shows the stripped-down version flowchart for

the Job Sorting criteria.

Sorting algorithm

Job sorting algorithm

Check size_of_job, Computational requirement and Deadline

requirement of jobs

3. If Job.Size =Very_Large & Comp.Req =

Very_High and

Deadline=Critical

4. Then sort the job to GroupA

5. End_if

6. If Job.Size =Large & Comp.Req=Medium

&Deadline= MediumCritical

7. Then sort the job to GroupB

8. End_if

9. If Job.Size=Medium & Comp.Req =Medium &

Deadline=Not_Critical

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4580 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

10. Then sort the job to GroupC

11. Else

 13. sort job to group D

14. End_while

 16. Stop.

3.1.0 Flow Chart for the Job Sorter

4.0 EXPERIMENTS, TESTS, DATA AND ANALYSIS

OF THE EFFECTS OF PARALLELISM USING

DIFFERENT THREADS

This set of tests was aimed at how an increase in threads

affects the performance of the sorting algorithm on a single

processor system.

 (i) The effects of threading on the Single processor

machine

Result: There was a very strong correlation coefficient

between the results among all the threads. the result for single

processor systems reveals a minimal improvement as the

number of threads increases. The trend levelled up at four

threads. Table 1 shows the number of jobs sorted and the

average completion time by the different threads.

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4581 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

Table 1 Thread Completion times for the Single Processor system

This test shows that for each set of jobs sorted, one thread

takes more average time in sorting. This is followed by two

threads, four threads then six threads. From the bar graph

(Figure 2) much cannot be deciphered between four threads,

six threads and eight threads.

Also, from the line graph in Figure 3, all the threads exhibited

the same characteristics, it shows a steady increase in

execution time as the number of jobs increases for all the

threads. Though this was to be expected, the difference

between the number of threads and the execution was not

decipherable – indicating that the impact of threading on the

single processor systems is minimal using this method of

analysis. Hence, we shall employ another analytic measure.

Figure 2 Bar chat representing completion times

Jobs coun OneThrea TwoThrea FourThre a SixThread EightThreadAverag

10000 284.09 167.55 109.55 116.55 133.55

50000 211.45 196.09 201.91 212.82 198.82

100000 470.18 535.36 400.55 430.45 394.91

150000 751.36 816.73 619.45 644.91 671.91

200000 1211.64 941.82 934.64 821.09 776.82

250000 1477.36 1134.91 1175 998.55 995.55

300000 1534.09 1477.18 1321 1337.91 1379.09

350000 1982.91 1662 1451.82 1378.91 1569.36

400000 2083.91 2154.82 1707.36 1998.45 1652

450000 2261.36 2276.91 2022.91 2018.55 1850.82

500000 2500 2195.91 2022.82 2294.09 2186.18

550000 2671.91 2308.27 2340.73 2276.82 2225.55

600000 3004.18 3068.09 2515.64 2444.64 2505.73

650000 3195.91 3277 3092.27 2808.18 2765.45

700000 3541.09 3375.09 2964.36 3123.45 3076.82

750000 3799.82 3481.45 3461.55 3412.09 3410.27

800000 3950.27 3836.82 3643.64 3701.64 3437.55

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4582 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

Figure 3 Line chat representing completion time by threads

(ii) Performance improvement by threads on the Single

processor machine using percentage measure

Since the line graph could not indicate much difference in

performance between the various threads, we computed the

average performance in percentage. Figure 4 indicates the

performance of each thread in percentage. One thread used

35% average time to sort the range of jobs. Two threads used

a 21% average time to sort the range of jobs. Four threads

used 14% average time to sort the range of jobs. Six threads

used 14% average time to sort the range of jobs while eight

threads used 16% average time to sort the range of jobs.

This shows that there was a significant performance gain

between one thread and two threads, and there was also a

significant performance improvement between two threads

and four threads. But there was no performance improvement

between four threads and six threads and finally, there was a

performance degradation between six threads and eight

threads. This indicates that beyond

4 threads, there was no longer any improvement. Also, as the

number of threads increases, the single processor system

becomes a bottleneck due to context switches and other

overheads. We therefore propose that for thread-level

parallelisation in single processor systems, the number of

threads should not be more than four.

Performance Difference between Successive Threads in

Percentage

We computed the percentage difference (improvement)

between successive threads. See Table 2. There was a 5.7%

difference in improvement between two threads and one

thread. There was an 8.8% difference in improvement

between four threads and two threads. The percentage

difference in improvement between six threads and four

threads was negative; this is because the general performance

degraded from this point. For 8 threads, we computed the

Figure 4. Percentage performance by different threads

1 ThreadAvg
% 35

ThreadsAvg 2
% 21

4 ThreadsAvg
% 14

ThreadsAvg 6
% 14

ThreadsAvg 8
% 16

ThreadAvg 1

ThreadsAvg 2

4 ThreadsAvg

6 ThreadsAvg

8 ThreadsAvg

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4583 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

performance improvement of 4 threads over 8 threads and

that of 6 threads over 8 threads because both performed

better. For this, the improvements were approximately the

same (See Figure 5). This indicates that beyond 4 threads,

there was no longer improvement in performance.

Table 2 Performance Difference between successive Threads in Percentage

1ThrdAggAvg 2Thrd&1Thrd 4Thrd&2Thrd 6Thrd&4Thrd 8Thrd&6Thrd 8Thrd&4Thrd

 34931.53 32906 29985.2 30019.1 29230.38

 5.7986 8.8762 -0.1131 2.6274 2.5173

Figure 5 Difference in percentage improvement between successive threads

5.0 CONCLUSION

The result and analysis show that increases in the thread

improve performance on the single processor system.

However, the rate of increase in execution time against the

number of jobs increased for all the threads – indicating that

as the number of jobs increased, the general performance

decreased.

 The analysis also showed a steady improvement in

performance as the number of threads increased from one to

two and between two and four threads.

However, the improvement leveled off at four threads and six

threads and degraded between six threads and eight threads.

This indicates that as the number of threads increases, the

single processor system poses a bottleneck to performance

due to context switches and other overheads.

We recommend that for thread-level parallelization in single

processor systems, the number of threads should not be more

than four for the sorting of grid jobs.

Future Thoughts

This work concentrated on the single processor system, in the

future, we will exploit the same method on different sets of

multicore systems, and then compare the performance against

the single processor system.

REFERENCES

1. Abraham, G. T. (2016). Group-based parallel multi-

scheduling methods for grid computing. Coventry

University.

2. Abraham, G. T., James, A., & Yaacob, N. (2015a).

Group-based Parallel Multi-scheduler for Grid

computing. Future Generation Computer Systems,

50, 140–153.

https://doi.org/10.1016/j.future.2015.01.012

3. Abraham, G. T., James, A., & Yaacob, N. (2015b).

Priority-grouping method for parallel multi-

scheduling in Grid. Journal of Computer and System

Sciences, 81(6), 943–957.

https://doi.org/10.1016/j.jcss.2014.12.009

4. Abraham, G. T., Osaisai, E. F. and, & Dienagha, N.

(2021a). Parallel Scheduling of Grid Jobs on

Quadcore Systems Using Grouping Methods. Asian

Journal of Research in Computer Science, 8(4), 21–

34. https://doi.org/10.9734/ajrcos/2021/v8i430207

5. Abraham, G. T., Osaisai, E. F., & Dienagha, N. S.

(2021b). Parallel scheduling of grid jobs on

quadcore systems using grouping methods. Asian

Journal of Research in Computer Science, 8(4), 21–

34.https://doi.org/10.9734/AJRCOS/2021/v8i430207

6. Agarwal, Amit. , & K. Padam. (20011).

Multidimensional Qos oriented task scheduling in

5.7986

8.8762

- 0.1131

2.6274 2.5173

2 Thrd&1Thrd 4 Thrd&2Thrd 6 Thrd&4Thrd 8 Thrd&6Thrd 8 Thrd&4Thrd

Percentage Improvement Between
Threads

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4584 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

grid environments. International Journal of Grid

Computing & Applications (IJGCA), 2(1), 28–37.

7. Amdahl, G. M. (1967). Validity of the single

processor approach to achieving large-scale

computing capabilities. AFIPS Conference

Proceedings - 1967 Spring Joint Computer

Conference, AFIPS 1967, 483–485.

8. Asanovic, K., B. R., D. J. , K. T. , K. K. , K. J. , and

Y. K. (2009). A View of the Parallel Computing

Landscape. Communications of the ACM, 52(10),

56–67.

9. Bae, Y., Park, S., Circuits, I. P.-I. J. of S.-S., & 2003,

undefined. (2003). A single-chip programmable

platform based on a multithreaded processor and

configurable logic clusters. Ieeexplore.Ieee.OrgYD

Bae, SI Park, IC ParkIEEE Journal of Solid-State

Circuits,2003•ieeexplore.Ieee.Org,38(10).

https://doi.org/10.1109/JSSC.2003.817259

10. Barthel, K. U., H. N., J. K., & S. K. (2023).

Improved evaluation and generation of grid layouts

using distance preservation quality and linear

assignment sorting. Computer Graphics Forum,

42(1), 261–276.

11. Bridges, M. J., Vachharajani, N., Zhang, Y., Jablin,

T., & August, D. I. (2008). Revisiting the sequential

programming model for the multicore era. IEEE

Micro, 28(1), 12–20.

https://doi.org/10.1109/MM.2008.13

12. Chen, Y. K., D. E., L. R., H. M. J., & Y. M. M.

(2002, December). Evaluating and improving

performance of multi-media applications on

simultaneous multithreading architectures. IEEE

International Conference on Parallel and Distributed

Systems.

13. Coleman, J., & M.-P. O. (2022). Robotic Sorting on

the Grid. In Proceedings of the 23rd International

Conference on Distributed Computing and

Networking, 26–30.

14. Debbi, A. E., H. A. F., & B. H. (2019). Would it be

Profitable Enough to Re-adapt Algorithmic

Thinking for Parallelism Paradigm? 2nd

International Conference on New Trends in

Computing Sciences (ICTCS), 1–6.

15. Eck, D. J. (2021). Introduction to programming

using Java.

https://biblioteca.unisced.edu.mz/handle/12345678

9/1574

16. El-Moursy, A., G. R., A. D. H., & D. S. (2005).

Partitioning multi-threaded processors with a large

number of threads. In IEEE International

Symposium on Performance Analysis of Systems

and Software, 2005. ISPASS 2005. . 112–123.

17. Foster, I. (2000). Internet computing and the

emerging grid. Nature Web Matters, 7.

18. Foster, I., & Kesselman, C. (1999). “The Grid:

Blueprint for a new computing infrastructure.”

Morgan Kaufmann.

19. Haji, L. M. , Z. S. R. , A. O. M. , S. M. A. , S. H. M.

, & A. A. (2021, June). Performance Monitoring for

Processes and Threads Execution-Controlling. In

(pp. 161-166). IEEE. International Conference on

Communication & Information Technology

(ICICT).

20. Inoue, Hiroshi. , T. Moriyama. , H. K. and T. N.

(2007). AA-sort: A new parallel sorting algorithm

for multicore SIMD processors. 16th International

Conference on Parallel Architecture and

Compilation Techniques (PACT 2007), 189–198.

21. Kalla, R. , S. B. , & T. J. M. (2004). IBM Power5

chip: A dual-core multithreaded processor. IEEE

Micro, 24(2), 40–47.

22. Kobra, E. & N. P. M. (2007). A min-min max-min

selective algorithm for grid task scheduling. In 2007

3rd IEEE/IFIP International Conference, 1–7.

23. Kristo, A. , V. K. , Ç. U., M. S., & K. T. (2020). The

case for a learned sorting algorithm. . 2020 ACM

SIGMOD International Conference on Management

of Data, 1001–1016.

24. Lacoe, R. C. (2008). Improving integrated circuit

performance through the application of hardness-

bydesign methodology. IEEE Transactions on

Nuclear Science, 55(4), 1903–1925.

25. Madriles, C., López, P., Codina, J. M., Gibert, E.,

Latorre, F., Martinez, A., Martinez, R., & Gonzalez,

A. (2009). Boosting single-thread performance in

multi-core systems through fine-grain

multithreading. ACM SIGARCH Computer

Architecture News, 37(3), 474–483.

https://doi.org/10.1145/1555815.1555813

26. McCool, M. D. (2008). Scalable programming

models for massively multicore processors. .

Proceedings of the IEEE, 96(5), 816–831.

27. Nair, R. (2002). Effect of increasing chip density on

the evolution of computer architectures. IBM

Journal of Research and Development, 46(2.3),

223–234.

28. Nasir, S., Shah, M., Mahmood, A. K., Kamil, A.,

Mahmood, B., Oxley, A., & Zakaria, M. N. (2012).

QoSbased performance evaluation of grid

scheduling algorithms. Ieeexplore.Ieee.OrgSNM

Shah, AKB Mahmood, A Oxley, MN Zakaria2012

International Conference on Computer &

Information Science, 2012•ieeexplore.Ieee.Org.

https://doi.org/10.1109/ICCISci.2012.6297118

29. Norollah, A. , D. D. , B. H. , & F. M. (2019). RTHS:

A low-cost high-performance real-time hardware

sorter, using a multidimensional sorting algorithm.

“Parallel Sorting of Randomly Generated Grid Jobs on a Single-Processor System”

4585 Dr. Abraham Tomvie Goodhead 1, IJMCR Volume 12 Issue 11 November 2024

IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, 27(7), 1601–1613.

30. Olukotun, K., Nayfeh, B. A., Hammond, L., Wilson,

K., & Chang, K. (1996). The case for a single-chip

multiprocessor. SIGPLAN Notices (ACM Special

Interest Group on Programming Languages), 31(9),

2–11. https://doi.org/10.1145/248209.237140

31. Pandey, R., & B. N. (2019, March). Understanding

the role of parallel programming in multi-core

processor based systems. In Proceedings of 2nd

International Conference on Advanced Computing

and Software Engineering (ICACSE).

32. Prabhu, M. K., & O. K. (2003). Using thread-level

speculation to simplify manual parallelization. The

Ninth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming, 1–12.

33. Rajeswari, D. , P. M. , & S. J. (2019). Computational

grid scheduling architecture using MapReduce

model-based non-dominated sorting genetic

algorithm. Soft Computing, 23(18), 8335–8347.

34. Schauer, B. (2008). Discovery Guides Multicore

Processors - A Necessity. In ProQuest discovery

guides. http://www.netrino.com/node/91

35. Sharif, K. H. , Z. S. R. , H. L. M. , & Z. R. R. (2020).

Performance measurement of processes and threads

controlling, tracking and monitoring based on

shared-memory parallel processing approach. 2020

3rd International Conference on Engineering

Technology and Its Applications (IICETA), 62–67.

36. Sirhan, N. N. (2020). Multi-core processors:

concepts and implementations. Available at SSRN

3628131.

37. Sprangle, E., & Carmean, D. (2002). Increasing

processor performance by implementing deeper

pipelines. Conference Proceedings - Annual

International Symposium on Computer

Architecture, ISCA, 25–34.

https://doi.org/10.1145/545214.545219

38. Sprangle, E., News, D. C.-A. S. C. A., & 2002,

undefined. (2002). Increasing processor

performance by implementing deeper pipelines.

Dl.Acm.Org.

https://dl.acm.org/doi/abs/10.1145/545214.545219

39. Stone, J. E., G. D., & S. G. (2010). OpenCL: A

parallel programming standard for heterogeneous

computing systems. Computing in Science &

Engineering, 12(3), 66.

40. Ungerer, T. , R. B. , & Š. J. (2002). Multithreaded

processors. The Computer Journal, 45(3), 320–348.

41. Vachharajani, N., Iyer, M., Ashok, C.,

Vachharajani, M., August, D. I., & Connors, D.

(2005). Chip multiprocessor scalability for single-

threaded applications. ACM SIGARCH Computer

Architecture News, 33(4), 44–53.

https://doi.org/10.1145/1105734.1105741

42. Valencia, D., & A. A. (2019). A real-time spike

sorting system using parallel OSort clustering. .

IEEE Transactions on Biomedical Circuits and

Systems, 13(6), 1700–1713.

43. Valencia, D., biomedical, A. A.-I. transactions on, &

2019, undefined. (n.d.). A real-time spike sorting

system using parallel OSort clustering.

Ieeexplore.Ieee.Org. Retrieved November 14, 2023,

fromhttps://ieeexplore.ieee.org/abstract/document/8

869918/

44. Vasanth, K., Sindhu, E., Microsystems, R. V.-M.

and, & 2019, undefined. (n.d.). VLSI architecture

for Vasanth sorting to denoise image with minimum

comparators. Elsevier. Retrieved November 14,

2023,fromhttps://www.sciencedirect.com/science/a

rticle/pii/S0141933119302522

45. Wang, P. H., Collins, J. D., Chinya, G. N., Jiang, H.,

Tian, X., Girkar, M., Yang, N. Y., Lueh, G. Y., &

Wang, H. (2007). EXOCHI: Architecture and

programming environment for a heterogeneous

multi-core multithreaded system. Proceedings of the

ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI), 156–

166. https://doi.org/10.1145/1250734.1250753

46. Wellein, G. , Z. T. , H. G. , & D. S. (2006). On the

single processor performance of simple lattice

Boltzmann kernels. Computers & Fluids, 35(8–9),

910–919.

47. Wieczorek, M. , H. A. , P. R. (2009). Towards a

general model of the multi-criteria workflow

scheduling on the grid. Future Generation Computer

Systems, 25(3), 237–256.

48. Zhong, H., L. S. A., & M. S. A. (2007). Extending

multicore architectures to exploit hybrid parallelism

in single-thread applications. IEEE 13th

International Symposium on High-Performance

Computer Architecture, 25–36.

