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ABSTRACT 
 

In VLSI circuit design, graph algorithms are widely used and graph structure can model 

many problems. As technology continues to scale into nanometer design, the effects of 

process variation become more crucial and design parameters also change. Hence, taking 

stochastic variations into account, probability distributions are used as edge weights to form 

statistical graph structures. General applications in VLSI circuit design, such as timing 

analysis, buffer insertion, and maze routing, can be formulated as shortest path problems 

using a statistical graph model. The solution of any such graph problem will surely have a 

statistical distribution for its cost function value. The mean and variance, square of standard 

deviation, values are used as a pair of weight values on a graph to represent the stochastic 

distribution on each edge. For the stochastic shortest path problem, we observe that the 

objective functions can be formulated using mean and standard deviation values of the 

resulting probability distribution and general cost functions are nonlinear. To solve for the 

nonlinear cost function, we intentionally insert a constraint on the variance. Several 

candidate paths will be achieved by varying the bound value on the constraint. With fixed 

bound value, the Lagrangian relaxation method is applied to find the feasible solution to the 

constrained shortest path problem. During Lagrangian relaxation, a feasible solution close to 

the optimal is achieved through subgradient optimization. Among the candidate paths 

obtained, the best solution becomes the ultimate solution of our algorithm for the original 

cost function under parameter variation. The algorithm presented in this work can handle any 

graph structures, arbitrary edge weight distributions and general cost functions. 

 

Keywords Shortest Path, Dynamic Program, Convolution, normal probability distributions. 

 

Introduction: 
 

The shortest pzath problem is one of the most fundamental problems in graph theory. The 

objective of finding the path to minimize the cost function in the classical shortest path 

problem has been studied intensively. Various algorithms have been established for different 

implementations. A single-source, multiple-target algorithm has been developed by Dijkstra 
[6].

 The Bellman- Ford algorithm is slower than Dijkstra’s algorithm, but it is applicable for 

graphs with negative edge weights 
[7].

 Another interesting algorithm is the Floyd-Warshall 
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algorithm which is used for multiple-source, multiple-target, or all-pair shortest path 

problems 
[8].

 

 

Recently, variation has become an important factor in analysis and has become more crucial 

as technology scales down. Hence, many recent researches heavily focus on improving the 

method and algorithm for statistical analysis. However, there are still some limitations with 

current works. 

 

Research on the shortest path problem in probabilistic graphs follows work by Frank 
[9].

 In 

practical situations, the costs or time is often random. This work estimates the sum of the 

probability distributions of the shortest path through acyclic networks weighted with random 

lengths. Following Frank’s work, Sigal et al. 
[10]

 addressed a shortest path problem through a 

directed, acyclic network where arc lengths are independent random variables. This work 

presented an analytic derivation of path optimality indices for directed, acyclic networks. 

 

In addition, different types of cost functions on the stochastic shortest path problem have 

been studied. One of the works, by Loui 
[11],

 found computationally tractable formulations of 

stochastic and multidimensional optimal path problems. Similar problems with maximizing 

the expected cost with piecewise-linear concave utility function were studied by Murthy and 

Sarkar 
[12].

 Lastly, Hall 
[13]

 and Fu and Rilett 
[14] 

studied the expected shortest path on 

stochastic shortest path problem. To combine the previous works, X. Ji proposed three 

models 

a- expected shortest path, 

b- α-shortest path and the shortest path 

c- developed a hybrid intelligent algorithm combined with genetic algorithm to solve 

proposed models 
[15].

 

 

However, these early researches on the statistical shortest path problem were designed for 

directed acyclic graphs (DAG) with specific edge weight distributions, such as the Gaussian 

distribution. Moreover, the algorithms cannot handle the general cost function, which can be 

nonlinear. 

 

To overcome the limitations of previous research, Deng and Wong found an exact algorithm 
[16]

 to find the optimal solution for the cost function 
μp

 
+φ(

 
σ2p

 
)
  on the statistical shortest path problem. Unlike former works, this 

 

algorithm handles general graphs, arbitrary edge- weight distributions and general cost 

functions. To minimize the uncertainty in the final result of the 

2 statistical problem, Deng and Wong added the variance constraint  
σ2

 
≤ B

  to the 

problem. 

 One of the early works that brought up the constrained shortest path problem was completed 

by Aneja and Nair 
[17]

. The algorithm presented in 
[17]

 is similar to the Lagrangian multiplier 

technique but it requires, on average, a number of iterations which are polynomially 

bounded. Cai et al. 
[18]

 also studied a different approach to the constrained shortest path 

problem that is very similar to ours. The problem is formulated on a graph with two weight 
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values time and cost on a directed graph with constraints. Three variants of the problem are 

examined: arbitrary waiting times, zero waiting times, and vertex-dependent upper bounds 

on the waiting times at each vertex. 

 

The stochastic shortest path algorithm introduced in this thesis can handle any general graph, 

arbitrary probability distribution, general cost function and integers as well as other non-

integer values. Finally, the computation runtime is very efficient compared to previous 

works. 

 

2. STOCHASTIC GRAPH AND OBJECTIVE 

 

To form a graph model with variation, statistical graph structure is constructed. A pair of 

representative values on a probability distribution are used in objective function, and hence, 

assigned for edge weights. The objective function of the shortest path problem with random 

variables is typically nonlinear. Our approach for the nonlinear cost function is to formulate 

the problem into a series of constrained optimization problems with various bound values. 

 

2.1 Statistical Graph 
 

If the random variable on each edge forms a Gaussian distribution, then the overall 

distribution along the path, which results from adding the Gaussian distributions of each 

individual edge on the path, will also be Gaussian. To cover the majority of the path length 

distributions, the objective function may 

be to minimize 

+¿ 3 σ p 

or to maximize 

+¿ 3 σ p 

. If the goal is to minimize the 

 

´ ´  

μp ¿ μp ¿  

worst case of statistical path length from the given source node to the target 

 

node, then the objective will be minimizing the cost function as 

min (μp +3 σ 

p )  

P  

 

for path p. For other general edge-weight probability distributions, the objective function can 

be set as Equation (1) due to Chebyshev’s inequality from Equation (2).
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From the above relation, any case of the given distribution can be considered by fixing 

the value of k. To solve for the stochastic shortest path problem, we only need mean μ 

and standard deviation σ values from the probability distribution. This allows us to 

simplify the statistical graph with two real numbers on each edge weight. Mean values 

of the cost function probability distribution are linear functions of mean values of each 

edge weight distribution. However, from the Equation (3), the function to compute the 

overall standard deviation from multiple probability distributions is nonlinear. Hence, 

the conventional shortest path algorithm cannot be directly applied. Instead, overall 

variance can be computed linearly as shown in Equation (4). Thus, instead of 

considering the entire random variation, we can simply represent the statistical 

distribution with mean and variance values for each edge weight on the statistical 

graph structure as shown in Figure 1. 

 

σ
 
p
 
=
√

∑
i∈p σi

2
 for path p (3)  

σ
2

p =∑ σi
2
 

for path p (4) 

 

i ∈ p   

     

     

 

Figure 1 Simplified statistical graph with pair (μ, σ
2
) for each weight. 

+¿ 3 σ p   +¿ 3 σ p   

´   ´   

μp ¿   μp ¿   

¿ 

or 

¿ 

(1) 

 

¿ ¿  

min¿   max ¿   

p   p   

p(|X −μp|≥ k σ p 

)≤ 

1 

 for random variable X and real number k > 0 (2) 

 

k
2
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and minimum variance, then this path will always be the optimal solution for the 

objective function. However, the probability that both the minimum mean and 

minimum variance lie on the same path is very low. Therefore it is necessary to 

compare the value of the cost function between paths. To achieve the goal, it will be 

extremely time-consuming to compare all the paths as the graph grows larger. It is 

sufficient to sample several path candidates and compare the goal. Typically, the 

candidate paths will have a small mean value but a relatively large variance, a small 

variance but a relatively large mean value, or fairly small values for both mean and 

variance. 

 

Similarly, for maximizing the reward function of the worst case of the variation, the 

possibility for the existence of an ideal path with both maximum mean and maximum 

variance is extremely low. There are some cases for which the number of paths from 

the source node to target node is unbalanced. For these special structured graphs, the 

ideal path is likely to exist; however, the greater part would not correspond to this rare 

case. Path candidates for the longest path will have either a large mean value but 

comparatively small variance, a large variance but small mean value, or both 

reasonably large mean value and variance. If we negate all mean values and variances, 

then the objective function becomes a minimizing problem. Then, we can sample 

paths with properties illustrated above by applying the same method to solve for 

minimizing the cost function. 

 

3. Problem definition and modelling 
Consider a network as shown in Figure 2 consisting of a finite set of nodes and arcs of 

the directed acyclic network. We assume that the admissible paths are always 

continuous and the length of each arc is normal random variable with parameters μ 

and σ
2
. We want to find the shortest path from the source node 1 to the sink node N 

using the backward dynamic programming approach. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Acyclic network with normal distributed arcs 

The optimal value function   can be defined by 

Si= the distribution of the shortest path from node i to node N. 

Consider the case for minimizing the worst case of any Gaussian  

distribution, 

min ( μp +3 σ 

p ) 

. If there is an ideal path that has a minimum mean 

 

P  
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Si 

Then the recurrence relation can be stated as 

 

For  i = N-1,…1 (5) 
S
i 

min
ji  

d
ij    

S
 j 

 

And the boundary condition is 

 

S N     0. 

 

In this paper, we use convolution to find distribution of sum of two normal distributions in 

each stage in each stage. The reason is the inefficiency of the methods such as maximum 

likelihood estimation and moment generating function in long computational efforts and 

inaccurate solution results. 

And for comparison in each stage we find the probability that a random variable with first 

distribution become smaller than another random variable with second distribution. In order 

to show the operation in each stage, represent the convolution and comparison between two 

normal density functions in subsequent section. 

 

Definition 1: Let X and Y be two continuous random variables with density functions f(x) 

and g(y), respectively. Assume that both f(x) and g(y) are defined for all real numbers. Then 

the convolution f *g of f and g is the function given by 

 

+∞ 

(f ∗g)( z )=∫ f ( x ) g ( z−x ) dx 

−∞ 

 

 

 

Theorem 1: Let X and Y be two independent random variables with density functions fX(x) 

and fY(y) defined for all x. Then the sum Z = X +Y is a random variable with density 

function fZ(z), where fZ is the convolution of fX and fY. 

+∞ 

f z ( z )=∫ f X, Y ( x , z−x ) dx −∞ +∞ 

¿ ∫ f X, Y ( z− y , y )dy     −∞ 

 

Proof: as we knew the joint density function of independent variables is equal to the 

products of their density functions therefore to find density function of Z = X + Y we apply 

cumulative distribution function technique. 

 

 

 X=x 

 X +Y ≤ z|¿ 

 ¿ 

 P ¿ 

+∞  

¿ ∫ f ( z− y ) g ( y ) dy (6) 

−∞  
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 +∞ 

P (Z ≤ z )=P ( X +Y ≤ z)=∫ ¿ 

 −∞ 

+∞ +∞ 

¿ ∫ 

P(x + y ≤ z ) f X ( x ) dx=∫ FY ( z−x ) f X 

( x ) dx 

−∞ −∞ 

 

Now, we set partial derivative to obtain the summation density function 

 

 

d FZ ( 

z)  d +∞     

f Z ( z 

)= dz = 

 

[ −∫∞ FY (z−x) f X ( x )dx ] 

   

dz    

     +∞ d FY (z−x) +∞   

     

¿ ∫ 

 f X ( x ) dx=∫ f Y ( z−x) f X (x ) 

dx 

(8) 

 

     

dz 

 

     −∞ −∞  

 

 

3.1. Sum of two independent normal random variables 
 

Suppose that we have two random variables X and Y with a normal density function with 

parameters μ and σ
2
. We represent the density function of Z = X + Y as follows 

 

   

1 

    

−( 

x−μx)
2
                                       

f X (x 

)= 

  

 e   2 σ
2

x 

 

,  

                                 

                                         

                                         

    √2 π σ x                                         

    

1 

     −(x−μ y)
2
                                  

f Y ( y 

)= 

 

   

e  2 σ
2

y .  

                                 

                                        

                                         

    √2 π σ y                                         

               ∞    

1 

  

−(z−x− 

μy )
2
 

1 

    

−(x−

μx )
2
              

f Y ( z−x ) f X ( x ) 

dx=¿ ∫ 

  

e 2 σ y
2
 

      

e 2 σ x
2
 dx 

          

                            

   √2 π σ 

y 

   √2 π σ 

x 

          

               −∞                           

                      +                                
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∞ 

                      ∫ ¿                              

                      

−

∞                                

                                           

[ 

 σx
2
 

( z−μy )+σ
2

y 

μx 2 

] 

  

          

[ 

 

] 

              

−(x − 

      

) 

  

∞ 1         

−( z−(μx +μy 

))
2
        1          σx

2
 +σ 

2
y   

¿ ∫ 

       

exp 

                     

exp 

        

d

x 

 

   

 

        

2 2 

           

   

   

2 

  

    

2 2  

                     

                        

−∞ 

√2 

 π 

√σx 

+σ 

y 

 

2 

(σ 

x +σ y) 

        

 σ x σ y  

    

 σ x σ y 

   

                 

                           

√2 π √ 

σx
2
 +σ 

2
y 

    

2( 

 

√ 

 

 ) 

   

                                

σ x
2
 +σ 

2
y    

                            

[ 

 σx
2
 ( z−μy )+σ

2
y μx 2 

] 

  

                   

−(x − 

       

) 

  

 1       −(z −( μx+μ y))
2
 ∞    1       σx

2
 +σ 

2
y    

¿ 

         

 

exp[ 

    

]−
∫
∞ 

        

exp 

         

dx 

 

 

√ 

 

√ 

    

 

  

2(σ
2

x+ σ
2

y ) 

   

  σ x σ y  

   

 σ x σ y 

2 

  

  

σ x
2
 

+σ
2

y 

           

 

2 π 

           

                 

                   

√2 π 

 

√ σx
2
 +σ 

2
y 

   

2( 

 

√ 

 

 ) 

   

                        σ x
2
 +σ 

2
y    

f Z (z)= 

1    

exp 

 −( z −( μx+ μ y))
2
                     

          

[ 2(σ
2

x+ σ
2

y )   ] 

                   

                             

√2 π √σ
2

x+ σ 

2

y 
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Result 1:if X1, X2,…, Xn are independent normal random variables with (μ1,σ1
2
), 

(μ2,σ2
2
),…, 

(μn,σn
2
) , then 

follows normal distribution with (  

n N .  

N 

∑ μi ,∑ σi
2
 ¿ 

  

YX i 

  

i=1 i=1   

i 1     

 

3.2. Finding minimum density function 
 

Now we illustrate the method that we use to find minimum between two normal random 

variables. In order to find the minimum random variable we compute the probability that the 

first random variable X1 with normal density function with (μ1,σ1
2
) became smaller than the 

second random variable X2 with normal density function with (μ2,σ2
2
) with considering 

result 1 we have 

 

 

 

 

 

 

 

 

 

3.2.1. Sum of two independent gamma random variables with same rate parameter 

 

Suppose that we have two random variables X and Y with a gamma density function with 

parameter λ>0 and α>0. We represent the density function of Z = X + Y as follows 

  λ
α
1    α1−1  −λx           

f X (x 

)= Г (α1 

) 

x  E  

x 

≥ 0,     

              

f Y ( x 

)= 

 λ
α
2  

x 

α 

2−

1 

e 

− λy  

y 

≥ 0, 

    

Г (α 

2) 

        

              

+∞ 

      

Z 
λ
α
2  ( z−x )

α
2

−1
 e

−λ(
 

z−
 

x)
  

λ
α
1 

x
α
1

−1
 e

−λx
 dx 

 

          

f Z ( z )=∫ f Y ( z−x ) f X ( x ) 

dx=∫ 
Г
 
(α

 

2 

)   

λ
α1+

 
α
 2 

 

Г (α 

1 )   

−∞       0     
α
 1+ −λz  

P X 

<

X 2 

) 

=P X −X <0 =P Z < 

0−(μ 
1−μ2 

) 

=φ 

μ2−μ1     

          

( 1  ( 1 2 ) 

( 

2 2 

) (√σ 

2 

+σ 

2  (10)  

        √σ1+σ2 1 2 )   
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α2 
−1

 

            ¿ 

Г (α1 +α 

2) z  e   

 

 

As a result, if X1, X2,…, Xn are independent gamma random variables with (α1,λ), 

(α2,λ),…, 

 N  n 

(αn,λ) 

then Y =∑ Xi 

follows gamma distribution with λ 

and α=∑ αi   . 

 i=1  i=1 

λα 1+ …+α n 

f Y ( y )= Г (α1 +…+α n) x
α1

 
+…+α

 
n+1

 e
−λx

 

 

 

Now we illustrate the method that we use to find minimum between two gamma 

random variables see [25]. 

 

∞ ∞  ∞ α 2  α1   

p( X1 <X2 )=∫ p ( X1 < X2|X1=x1 

). f x1 (x1 ) d x1=∫∫ 

λ2 x2
α
2

−1
 e

−λ
2 

x
2 . 

λ1  x1
α
 1

−1
 e

−λ
1 

x
1 d 

x2 d x1 

 

Г 

(α2) 

Г (α1 

) 

 

0 0  x1    

 

4. Sampling Method Using Constraints 
 

To sample the path candidates for the objective function, we will formulate the problem as a 

series of constrained shortest path problems shown in Equation (11). This problem finds a 

shortest path with minimum overall mean with respect to the variance constraint. As shown 

in Equation (12), varying the bound value B from the upper limit of variance to a lower limit 

 

creates a number of constrained optimization problems. Solutions for each constrained 

problem may result in different paths. 

¿ 

min μp σ 

p ∈P 

 

subject 

¿ 

 

p
¿
={¿ p

2
 ≤ B ¿} 

where  
μ
p

=
∑ 

μ
i 

,
 

i ∈ p 

 

 

min σ
2

p <B ≤ max σ
2

p +Ɛ for small Ɛ 

(12) 

 

p P  
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Initially, the bound value will be set as the upper limit of variance; therefore, the constraint is 

very loose. This problem considers all the paths to obtain the shortest path regardless of the 

value of variance as long as it meets the constraint. As the bound value gets smaller, i.e., 

tighter constraint, the feasible path will have a smaller variance; however, the mean value is 

likely to increase due to the narrower feasible set. All these path solutions target either 

minimizing the mean, variance or both; hence, these are eligible as the path candidates for 

the original objective. 

 

Depending on the value of the bound, some constrained problems might have the same 

solution path. To eliminate the redundancy, we set the bound value according to the variance 

of the current solution, for example assume 

 
σ2B

 
1
    is the variance of the solution path to the constrained problem with bound value B1. 

Until the bound value reaches the variance of the current solution, B = 
σ2B

 
1
    , this path stays 

in the feasible set and it is the best solution. We set the next bound value to be slightly 

smaller than the variance of the current solution, for small B = 
σ2B

 
1−Ɛ

  , in order to move this 

solution out of the feasible set. 

Then, a different solution path will be achieved for the newly formulated constrained 

shortest path problem. 

 

4.1 Lagrangian Relaxation 
 

A well known approach for the constrained optimization problem is the Lagrangian 

relaxation method 
[19].

 This method can also be applied for the shortest path problem with an 

additional side constraint. The basic concept of Lagrangian relaxation is to combine the 

constraint into the objective function by relaxing the constraint. Then, as shown in Equation 

(13), we can easily approach the constrained shortest path problem indirectly with the 

modified cost 

function without any constraints,  
μp

   +  
λ
 
(σ2p−B).

 Lagrangian multiplier and it is also known as 

the Lagrangian multiplier problem. The Lagrangian multiplier problem is a  

 

dual problem to the primal problem, which is the constrained optimization problem 
[20].

 One 

common property of the relationship between the primal and the dual problem is weak 

duality. Weak duality means the optimal objective function value g* of the Lagrangian 

multiplier problem in Equation (8) is always a lower bound on the optimal objective function 

value of the primal problem p* from Equation (5), 

i.e. .  
g¿

 
≤ p¿

   With respect to the weak duality property, the solution for the 

 

Lagrangian multiplier problem will give a lower bound value for the primal problem. In 

Equation (9), this weak duality relationship is manifested. 
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L( λ )=¿ max 

min μ + λ σ
2
 −B 

)} 

for path 

P  

λ≥ 0  p ∈P 
{
 p ( p    

g
¿
=max ¿ 

λ≥0 

¿ 

min μ p σ 

p ∈P 

subject 

¿ 

max min {μ p+ λ (σ 
2
p−B)}=g

¿
 ≤ p

¿
={¿ p

2
 ≤ B¿}for path P 

λ≥0  p ∈ P 

 

With  fixed constant  B, the modified cost function,  
μp

 
+
 
λ
 
(σ2p−B)

 , of the 

Lagrangian multiplier problem can be used as weights on the graph as drawn on Figure 3. 

The Graph in Figure 7 is converted from the example shown in Figure 4(a). Now, the graph 

has only single weight value and it has the conventional graph structure. On this graph, we 

can first apply the shortest path algorithm to solve the Lagrangian multiplier problem after 

fixing the Lagrangian multiplier value λ. For general graphs with positive weights, Dijkstra’s 

shortest path algorithm can be applied. Dijkstra’s algorithm is a graph search algorithm that 

solves the single-source shortest path problem for a graph with nonnegative edge path costs 

[6]. The algorithm finds the path with lowest cost between a given source vertex and every 

other vertex. In the case with negative weights, the Bellman-Ford algorithm can be used or if 

the graph is directed and acyclic, the topological sort algorithm can be used for more 

efficient runtime. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 Graph with modified cost function as weight. 

 

The resulting solution of the modified cost function from the graph in Figure 3 will form a 

piecewise linear concave function over the Lagrangian multiplier λ. All the points on this 

minimum envelop of the Lagrangian function are lower bounds for the optimal solution of 

the original problem. Among the points, the supremum of the Lagrangian multiplier problem 

or dual problem, least upper bound g* which is equal to the peak value of the concave 

function, is the closest to the optimal and will be the best lower bound for the primal 

problem. The relationship between the primal and the dual problem is shown in Figure 8. 
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The supremum point of the dual problem can be obtained by maximizing the Lagrangian 

multiplier function. 

 

4.2 Subgradient Optimization 

 

The Lagrangian multiplier problem, or the dual problem, is always a concave function but 

not necessarily differentiable. To account for this situation, the subgradient optimization 

technique has been implemented to maximize the Lagrangian multiplier problem, which is 

nondifferentiable. Subgradient optimization is a generalization of the steepest descent 

method, i.e. the gradient method. The idea of this optimization technique is to move to the 

direction d where directional derivative of function f is positive, , with small enough step 

length. Equation (10) is derived from Equation (7) and since λ is the variable, the gradient of 

equation (10) is shown in Equation (11). To the positive gradient direction, we move the 

lambda value to reach to the best value. The equation to update lambda during iteration is 

stated in Equation (12). From this equation, step size θ should be carefully assigned in order 

to guarantee the convergence. 

Practitioners of the Lagrangian relaxation method often use the following heuristic for 

selecting the step length stated in Equation (13). 

 ( λ)=min 

{ 

μ + λ (σ
2
 −B) p ∈ P 

} 

 

L p 

p P |  

      

 d L ( λ) 

=  σ
2

p −B 

  

 d ( λ)   

λk+1 ← λk+θk (σ 
2

p−B) 

θk= 
vk

 
[UB−L(

2
λk

 
)]
 ,UB=upper bound , 0<vk ≤ 2 

 

‖σ 
2
p−B‖ 

In the step size equation, the scalar vk is any number between 0 and 2. Throughout the 

iteration, it will be reduced by a factor of 2 whenever the best Lagrangian objective function 

value found so far has failed to improve in a specified number of iterations. UB is the upper 

bound of the optimal objective function. The initial upper bound can be any known feasible 

solution to the problem. During the subgradient iteration, the upper bound will be updated if 

a smaller feasible solution has been generated. A feasible path that provides the upper bound 

approaches the optimal path as the subgradient iteration converges. Several constrained 

problems formed with different bound value B will sample different feasible paths which are 

the solution candidates for the original objective function. The value of the goal will be 

calculated and compared among the candidate paths. Afterwards, the best result will be 

chosen as the solution of the Lagrangian relaxation based stochastic shortest path algorithm. 

 

4.3 Algorithm 
 

The stochastic shortest path algorithm based on the Lagrangian relaxation method described 

in previous sections is provided below. It is the global view of the algorithm, and the existing 

algorithm was implemented on shortest path. For the subgradient optimization, he initial 
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value of v is chosen as 0.8 after several experiments on convergence. We defined the 

convergence criterion to be when the error between previous and current λ values is small 

enough within 10 000 iterations. 

 

Begin   

μi ,σi
2
 

  

Input given graph with ( ) as weight;  

Calculate min σ
2
p   and max σ

2
p   ;  

Let initial UB = μp of the any known path;  

Set initial B = max σ
2

p +  
Ɛ
 ;  

Set L(0) ← min μp ;    

      

 

Set v = 0.8, θ and λ; Repeat until B <min 
σ2p

 , 

Topological sort shortest path for min{ 
μp

   + 
λ(
 
σ2p−B)}

 

 
 

 

 

 

 

 

 

 

Reset v = 0.8, θ 

and λ using 

Equation (12)-(13); Else, 

Update v ← v/2; 

Set θ and λ using Equation (12)-(13) with updated v; End if 

End 

 

σcur
2
 ← σ

2
p of shortest path for min{ μp + λ(σ

2
p−B)}  

μ
cur ← μp of shortest path for min{ μp + 

λ( 

σ
2

p−B)}  

If converges, 

σcur
2
 −Ɛ  ; 

    

Set next B =     

Calculate 

+¿ 

kσ 

of the sampled paths with different B; 

 

μ ¿
´
  

Obtain min 

+¿ kσ 

or max 

+¿ kσ 

; 

 

μ 

´ ´  

¿ μ ¿  

 

 

 

3. Numerical example 

 

Consider the network depicted in Figure 1. We want to obtain the shortest path from node 1 

to node 6 where arcs have normal distribution. 

Boundary condition is 

 

S6 = 0. 
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Using the recurrence relation (1) we have 

 

S5=N (4,1)  ,  S4 =N (3,1) 

 

For each arc doesn’t exist in network we replace infinity for dij, so operations of S3 can be 

stated as 

S3
=
min [

N
N 

(
(
4,1

5,1
)+

)+ 
S

S
4

5 ]
=
min[

N
N 

(
(5,1

4,1)+
)+ 

N
N 

(
(
3,1

4,1
)
)] 

 

Using result 1 we have 
S
3

=min
 [

N
N 

(
(
7,2

9,2
)
)] 

 

We find the minimum value between two normal random variables by using formula 

(4) as follows 

P( X1 <X2 )=P( X1−X 2<0 

)=P(Z < 

μ –μ  

√σ
2
 12+ σ

1
22 )

=P
 (

Z
 
<
 √

9
2
−

+
7
2 )

=φ
(√

2
4 )

=φ
 
(1)=0.8413

  

So the first density function is minimal, 

 

S3=N (7,2) 

 

We illustrate the operation of node 2 as follows 

S2
=
min [

N
N 

(
(
5,2

7,4
)+

)+ 
S

S
4

5 ]
=
min [N

N
 
(
(
5,2

7,4
)+

)+
N

N 
(
(
3,1

4,1
)
)]

=
min[N

N
(
(
11,5

8,3)
)] 

 

To find minimum density, we make use of the following probability, 

 

P( X1 <X2 )=φ(
11

√
−

8
8
 )=φ(√

3
8 )=φ(4

3
√2 )=0.8556 

 

So with probability 0.8556 we choose first density function as minimum density 

function. 

 

S2=N ( 8,3) 

Now we do operations for S1 to find the shortest path in network 

 

 

                   P(  

 

 

 

 

X1 <X2 )=φ(
11

√
−

9
12

 )=φ(
−

3
1
 )=0.3694 S1=N (11,5) 

 

 

CONCLUSION 
 

N (4,1)+ S2 N (4,1)+ N (5,2)+ N (3,1) N (12,4) 

] 

 

S1=min
 [N (4,3)+ S3 ]

=min
[N ( 4,3)+ N (4,1)+ N (3,1)]

=min
[N (11,5)  
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As the impact of process variation increases, we cannot rely on the results from conventional 

algorithms that assume variations are negligible. The solution of the traditional algorithms 

might be very different from the statistical problem considering the variations that form a 

probability distribution for edge weights on the graph. There were several researches on the 

statistical shortest path; however, previous algorithms were not very efficient in runtime and 

the majority of them had limitations on practical applications. In this work, we have 

introduced an efficient way to obtain a reasonable solution based on Lagrangian relaxation. 

We intentionally insert a constraint and formulate a series of constrained problems by 

varying the variance bound value and sample candidate solutions for each formulated 

problem. At the end, we compare the objective value of the sampled candidates and attain 

the best solution. 

 

The method we proposed in this work can be used in various applications in nanometer 

design that potentially have high parameter variations that are significant. Common 

applications in nanometer designs include timing analysis, maze routing, and buffer 

insertion. For timing analysis, precise timing information is necessary for circuit 

optimization to meet the yield or avoid over design. Maze routing finds the shortest path in 

the grid routing problem. The parameter variations cause the edge weights to be a probability 

distribution, and the cost functions are mostly related to the variations. Buffer insertion is a 

commonly used interconnection optimization technique. The possible buffer inserting 

location can be structured as nodes and the wire interconnection can be edges on the graph. 

Our algorithm can be implemented on the above listed nanometer circuit design applications 

to achieve efficient runtime. 
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