
     

  

 

4613 Umar Saidu Bashir1, IJMCR Volume 12 Issue 12 December 2024 

 

 Volume 12 Issue 12 December 2024, Page no. – 4613-4632 

 Index Copernicus ICV: 57.55, Impact Factor: 8.316 

 DOI: 10.47191/ijmcr/v12i12.01 

Stability Analysis of the Disease-Free Equilibrium State for Lymphatic 

Filariasis with Chemical and Biological Control on Vector 
 

Umar Saidu Bashir1, Samuel Musa2  
1Department of general studies, Federal polytechnic Bali 
2Department of Mathematics, Modibbo Adama University Yola 

 

ARTICLE INFO ABSTRACT 

Published Online: 

03 December 2024 

 

 

 

 

 

 

 

Corresponding Author: 

Umar Saidu Bashir 

In this paper, we develop a mathematical model to analyze the transmission dynamics and 

control strategies for Lymphatic Filariasis (LF), incorporating both chemical and biological 

control measures targeting the disease vector. The model is proven to be both mathematically 

and epidemiologically sound. By determining the basic reproduction number (\(R_0\)), we 

establish the conditions for local and global stability of the disease-free equilibrium (DFE). 

The model highlights the impact of Wolbachia bacteria on mosquito populations and the role 

of drug resistance and recovery in human populations. Our results demonstrate that reducing 

\(R_0\) below 1 is crucial to eradicating LF from an endemic population, and thus, preventive 

measures, including vector control, are essential. Further research is recommended to optimize 

the combined use of chemical and biological controls to achieve long-term stability and 

disease eradication. 
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1.0 INTRODUCTIONS  

Lymphatic filariasis (LF) is a neglected tropical disease 

(NTD) caused by parasitic filarial worms, primarily 

Wuchereria bancrofti, Brugia malayi, and Brugia timori. 

These parasites are transmitted to humans through the bites 

of infected mosquitoes, which serve as vectors. LF is 

characterized by the obstruction and inflammation of the 

lymphatic system, leading to severe and often debilitating 

symptoms, including lymphedema (swelling), hydrocele 

(fluid accumulation in the scrotum), and elephantiasis 

(thickening of the skin) (World Health Organization 

[WHO], 2021). LF is endemic in more than 70 countries, 

predominantly in tropical and subtropical regions of Africa, 

Asia, the Western Pacific, and parts of the Americas. 

According to the WHO, over 120 million people are 

infected globally, with about 40 million suffering from the 

severe manifestations of the disease (WHO, 2021). The 

disease disproportionately affects the poorest populations, 

leading to significant socio-economic consequences 

(Ottesen & Hooper, 2008). Diagnosis of lymphatic filariasis 

typically involves the detection of microfilariae in the blood, 

usually through a blood smear taken at night when the 

microfilariae are most abundant. Serological tests, such as 

antigen detection assays, can also be used to identify active 

infections (Becker et al., 2018). 

ant filarial medications such as diethylcarbamazine (DEC) 

and albendazole. This approach aims to reduce the 

prevalence of the disease and interrupt transmission (WHO, 

2021). Community-wide treatment campaigns are essential 

to achieve the target of eliminating LF as a public health 

problem. In addition to MDA, management of clinical 

symptoms is crucial. Patients with lymphedema may benefit 

from hygiene, skin care, and physical therapy, while surgical 

interventions can be considered for severe cases of 

hydrocele or lymphedema (Ottesen & Hooper, 2008). 

Rojas, C. A., & Tien, C. (2016) summarizes various 

mathematical models developed for lymphatic filariasis, 

discussing methodologies, findings, and future research 

directions. Silumbwe, Zulu,  Halwindi,  Jacobs,  Zgambo,  

Dambe,  & Michelo (2017)  reviews the effectiveness of 

mass drug administration strategies against LF, using 

mathematical modeling to predict outcomes under different 

scenarios. While not exclusively focused on lymphatic 

filariasis, Rogers, D. J., & Randolph, S. E. (2006) discusses 

https://doi.org/10.47191/ijmcr/v12i12.01
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the implications of climate change on the transmission of 

vector-borne diseases, including LF, and presents 

mathematical models to assess potential risks. Alonso, D., & 

Bansal, S. (2017) studies the uses mathematical models to 

evaluate the short- and long-term effects of mass drug 

administration on LF transmission dynamics. Other models 

are models are Bockarie, M. J., et al. (2009), Ferguson, N. 

M., & Anderson, R. M. (1999). 

Lymphatic filariasis remains a significant public health 

challenge in many parts of the world. Efforts to eliminate 

the disease through MDA, health education, and improved 

vector control are critical to reducing the burden of LF and 

improving the quality of life for affected individuals. 

Mwamtobe et al., (2017) developed a model that consider 

quarantine of infected-chronic and treatment of the infected 

acute individuals. The result shows that with quarantine and 

treatments, the rate of reduction of lymphatic filariasis is 

higher. In this work, we therefore extend his works by 

adding a drug resistance compartment and recovered class in 

the human population. We Also incorporated mosquito with 

wolbachia populations: Aquatic stage with wolbachia, wA , 

Male mosquito with wolbachia, wM , Female Mosquito with 

wolbachia, wF . 

 

2.0 MODEL FORMULATION  

The Lymphatic Filariasis (LF) model with human 

population under study is divided into 6 compartments and 

vector (mosquito) population into 7 compartments is 

formulated. The model will subdivide the human population 

at time t, 𝑁(𝑡)  into the class of susceptible individuals 

𝑆ℎ  (𝑡), the exposed class, 𝐸ℎ  (𝑡) , LF infected acute 

individuals,  ( )haI t , LF Infected Chronic, ( )hcI t ,Drug 

resistance individual, RD ( t ) and the Recovered 

individuals,𝑅(𝑡). 

Such that the total human subpopulations 

( ) ( ) ( ) ( ) ( ) ( )h h h ha hcN t S t E t I t I t R t                                                               

(1) 

The model considers lymphatic filariasis, of which a wide 

range of mosquitoes (anopheles, culex, Aedes) can transmit 

the parasite, depending on the geographic area. the most 

common vector in Africa is the anopheles. The recruitment, 

Λℎ of individuals into the susceptible class is either by birth 

or immigration. Some are Exposed to lymphatic filariasis 

and if infected move to exposed class by the   

 

𝜆ℎ =
𝛽ℎ𝜗ℎ𝐹𝑖𝑆ℎ

𝑁ℎ
        

         (2) 

with 𝛽ℎ being the finite probability that, in case an 

infectious mosquito bites a susceptible 

human, a worm (in the form of filarial larva) passes into the 

human body. 𝜗ℎ is the mosquito biting rate (rate at which 

mosquitoes bite susceptible human), 𝐹𝑖  is the infected 

female mosquito Population without wolbachia. The 

infectious worm moves to the lymphatic system where it 

develops into its next life stage. Thereafter move to infected 

acute class and subsequently when the sign start 

manifesting, they move to the infected chronic. 

There is a reduction of the human population in each class 

through natural death at rate 𝜇ℎ. We assume that the natural 

death rate is the same for all subpopulations of the human 

population. 

The mosquito population  𝑁𝑣(𝑡) is divided into Aquatic or 

larva stage, 𝐴(𝑡), male mosquito without wolbachia 𝑀(𝑡)  , 

female mosquitoes without wolbachia , 𝐹(𝑡)  , infected 

female mosquito population without Wolbachia, 𝐹𝑖  , Aquatic 

or larva stage with wolbachia , 𝐴𝑤(𝑡) male mosquito with 

wolbachia, 𝑀𝑤(𝑡) and female mosquitoes with 

wolbachia, 𝐹𝑤(𝑡) such that subpopulations such that 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v i w w wN t A t M t F t F t A t M t F t      

                                      (3) 

The mosquito population increases through Maturation of 

the larva or aquatic stage. The mosquito populations in each 

class are reduced by introducing wolbachia bacteria. 

Mosquitoes die naturally at rate 𝑑𝑤 and we assume that this 

rate is the same throughout all subpopulation classes. 

The corresponding mathematical equations of the above 

description are given by a system of 

Ordinary differential equations below: 
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                                        (4) 

 

 

 

v
m v

dN
b d N

dt
   

In the biological-feasible regions: 

13( , , , , , , , , , ,A ,M ,F ) : 0, 0, 0, 0,

0, 0,A 0,M 0, 0,, 0, 0, 0, 0;

( ) ; ( )
v

h h ha hc R i w w w h h ha hc

R i w w w

d t

h
h v

h v

S E I I D R A M F F S E I I

D R F F A M F

be
N t N t

d







 
 

     
 

           
 

   
  

   (5) 

 Equation (5) can be shown to be positively invariant with respect to the system (4) 

 

Table 1. Description of variables and parameters of the modified model 

Parameters                       Descriptions 

𝑆ℎ(𝑡)                               Susceptible human at time t 

𝐸ℎ(𝑡)                               Exposed human at time t 

𝐼ℎ𝑎(𝑡)                              Infected acute human at time t 

h
h h h

dN
N

dt
    
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𝐼ℎ𝑐(𝑡)                              Infected chronic human at time t 

𝑅(𝑡)                                 Recovered human at time t. 

𝐷𝑅(𝑡)                               Drug resistance class at time t. 

𝑀(t)                                 Population of male mosquito without wolbachia at t. 

𝐹(𝑡)                                 Population of Female Mosquito without wolbachia at time t. 

𝐹𝑖(𝑡)                                 Infected female mosquito population without Wolbachia,                  

𝐴(𝑡)                                 Population of larva or aquatic stage at time t. 

𝑀𝑤(𝑡)                              Population of male mosquito with wolbachia at time t. 

𝐹𝑤(𝑡)                               Population of Female mosquito with wolbachia at time t  

𝐴𝑤(t)                               Population of aquatic or larva stage of mosquito with wolbachia  

𝑛                                       Recovery rates of drug resistance class due to alternative drug 

                                         administration   

𝛾                                       Recovery rates of chronic individuals  

𝜂                                       Proportion being matured to adult male  

𝛿                                       Maturation rates of adult mosquito from larva or aquatic stage 

Λℎ                                     Recruitment of human populations                                                                                                               

𝜔                                      Rate of loss of immunity. 

𝜋                                      Rate at which infected acute are responding to Treatment and 

                                         move to recovered class. 

𝑚                                   Rate of Individual that are resistant to drugs therefore move to drug 

                                        resistant class. 

𝑘                                      Progress rate from infected acute to infected chronic 

𝜉                                      Chemical control larvicide on larva or aquatic stage 

𝑑𝑚                                   Natural death of wild mosquitoes  

𝜇ℎ                                    Natural death of human  

𝑝                                      Proportion of children infected at birth 

𝜑                                      Rate at which children born are infected LF at birth and  

    born susceptible 

𝑑𝑤                                   Natural death of mosquitoes with wolbachia  

𝛾1, 𝛾2                               Infestation rate of male and female mosquito with wolbachia  

                                         respectively 

𝛼ℎ                                     Progress rate of human from susceptible to exposed 

b       Natural reproduction rate of adult female mosquito 

                                         with wolbachia 

 

3.0 MODEL ANALYSIS 

3.1 Existence of disease-free equilibrium state 

At the disease-free equilibrium state, we have absence of infection. Thus, all the infected classes will be zero and the entire 

population will comprise of only susceptible individuals. 

Theorem 3.1: A disease-free equilibrium state of the model exists at the point 

 0

1 2

22

1 1 12
0 2

2

, , , , , , , , , ,A ,M ,F

(1 ) b(1 )
,0,0,0,0,0, , , ,0,
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( ( ) )( 1)
,
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h
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p b b

d d d d d
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E

d d d d b b

   

        

      

     

            

   

       

     


     

1

1

2 2

2

,
( )( )
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( )( )( )

w

w m m

w
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A b

d d d
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 
 
 
 
 

   
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Proof: 

At equilibrium state the rate of change of each variable is equal to zero 

0h h ha hc i w w wRdS dE dI dI dF dA dM dFdD dR dA dM dF

dt dt dt dt dt dt dt dt dt dt dt dt dt
              

At disease-free,  

0h ha hc R iE I I D F       

Hence, a disease-free equilibrium of the model exists at: 
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 
 
 
 
 
 
 
 

   

 

3.2 Invariant Region 

Theorem 3.2: The closed set 
6 4 3

h m wD D D D            
where 

   6 1, , , , , : ( ) h
h h h ha hc R h

h

D S E I I D R N t
N




  
   
 

 , 

7 1(A,M,F,F , , , ) : ( )v i w w w v

m

b
D A M F N t

d


 
   
 

 , and  

    3, , : ( ) (0) wb d t

w w w w w wD A M F N t N e


   . 

is positively-invariant and attracting with respect to the modified model equation given by system (4).
 

 

Proof:  

Considering the human population, we have  

hN = h h ha hc RS E I I D R                                                                                     7  

Differentiating  7 , we have  

h h h ha hc R
dN dS dE dI dI dD dR

dt dt dt dt dt dt dt
                                                                   8  

 

Substituting the right-hand sides of equation  4  in  8 , gives us  

 1
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(9) 
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Integrating (9) with respect to t  we obtain 
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Hence, the invariant region for the human population is given by   
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Similarly, considering the population of natural mosquitoes. the invariant is given by  

  4 1, , , : ( )m i m

m

b
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d


 
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Similarly, considering the mosquito with Wolbachia population. the invariant region for the population is given by   

    3, , : ( ) (0) wb d t

w w w w w wD A M F N t N e


  
 

Therefore, from (11), (12) and (13), the possible solutions of the system (4) will enter the positively invariant region  

h m wD D D D   .           14     

Equation  14 defines the property by which a lymphatic filariasis remains unchanged under some transformation. 

 

3.3 Positivity of the model solution 

 Lemma 3.1:  

Let the initial data of the model equation given by system  4  be given as 

13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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 then the solution set 
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 of the model equation given by system  4  is positive for all

0t  . 

Proof:  

Let
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, thus, 1 0t  . 

Considering equation (3.8) we have 

 (10) 

 

(11) 

(12) 

(13) 
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Using separation of variables method, we have 
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Integrating both sides from 1 0t    to 1t t  
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Hence, ( ) 0hS t  . 

Using similar technique, it can be shown that 
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 
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

  ,  
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  . 

Therefore, the solution of the model equation given by system (4) with positive initial data will remain positive for all 0t  . 

3.4 Basic Reproduction Number 0  
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According to Dietz (1993), (Mayengo, Kgosimore, & Chakraverty, 2020), the basic reproduction number is the average number of 

secondary infections caused by a single infected individual in a population that is fully susceptible during their infectious phase. 

The basic reproduction number, as determined by the next generation matrix method. Exploring the method of the next generation 

matrix, we obtained the value of the basic reproduction number  0  as  1FV 
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3.5 Local Stability of the Disease-Free Equilibrium Point 

Theorem 3.2: The disease-free equilibrium point  0E , of the model equation given by system (4) is locally asymptotically stable 

in the region D. 

Proof: 

From equations (4), Let  
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Thus, the Jacobian matrix of the model equation (4), is given by  
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The Jacobean evaluated at the DFE, is given by  
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v h

F S
p d p d p d p p p

N N

 
             

 

We need to show that all eigenvalues of  16  are negative. As the first, sixth, tenth, eleventh, twelveth and last columns contains 

only the diagonal term which forms the eigenvalue, 5 9 10, , , ,  and h m wp d p p d      , the other seven eigenvalues can be 

obtained from the sub-matrix  1 0J E . Hence, we have  



“Stability Analysis of the Disease-Free Equilibrium State for Lymphatic Filariasis with Chemical and Biological 

Control on Vector” 

4625 Umar Saidu Bashir1, IJMCR Volume 12 Issue 12 December 2024 

 

 

1 11

2 11

1 3

1 0 4

6

7

10 10 10 12 8

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0

h

p p

p p

k p

J E m p

p b

p

p p p p p





  
 

 
 
 

  
 
 

 
     

    (17) 

Then (17) can be reduced using Gaussian elimination method, the reduced matrix  2 0J E is given as: 

 

 

 

 

1 11

11 1

2

1

1 11 1

3

1 2

2 0 11 1

4

1 2

6

7

6

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

h

h

h

m

p p

p p
p

p

k p p
p

p p

J E mp p
p

p p

p b

b
p

p

p









  
 

 
 
 

 
 

 
  

 
 
 
 
 

 
 
  

   (18) 

Where 

2 1 3 4 7 12 2 1 3 4 6 7 8 1 4 10 11 4 10 11

1 3 10 11 3 10 11 1 3 4 10 11 3 4 10 113 2 1 4 7 6

1 h

m

h h

bp p p p p p p p p p p p p b kp p p p b kp p p
p

b mp p p p b mp p p b p p p p p b p p p pp p p p p p

  

     

    
  

     now, 

taking the product of the diagonal elements of matrix (4.63) gives the eigenvalues as: 

   

     
 

1 1 2 2 1 3 3

4 4 1 5 6 6 7 1 7

( ), , ,
19

, , , .

h h h h

h m m m

m p m p m k n m p

m p n m p d m p d m p

     

   

                 


                  
7 is true if m  

2 1 3 4 7 12 4 10 11 2 1 3 4 6 7 8 1 4 10 11

3 10 11 3 4 10 11 1 3 10 11 1 3 4 10 11

h

h h

bp p p p p p b kp p p p p p p p p p b kp p p p

b mp p p b p p p p b mp p p p b p p p p p

  

     

    
   

      
 

from equation (19), 1 2 3 4 5 6 7, , , , , , 0m m m m m m m  this proves Theorem 4.3 as required. Thus, the disease-free equilibrium 

point is locally asymptotically stable. 

3.6 Global stability of disease-free equilibrium point 

The result in Theorem 4.3 implies that the LF can be eliminated from the population if the initial size of the populations of the 

model given by system (4) is in the basin of attraction of the DFE  0E .To ensure that the elimination of LF is independent of the 

initial sizes of the populations of the model, it is necessary to show that the DFE is globally-asymptotically stable (GAS). This 

will be established using the method by Castillo-Chavez (2002). We rewrite the model equation given by system (4) in the 

following form: 

 

   

, ,

, , ,0 0

dX
K X Z

dt

dZ
G X Z G X

dt



 
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Where   8, , , , , , ,h w w wX S R A M F A M F    represents the subpopulation of uninfected individuals and 

  5, , , ,h ha hc R iZ E I I D F   represents the subpopulation of infected individuals. Suppose  *

0 , 0E X  represents the 

disease-free equilibrium point of the system (3.8) - (3.20). For 0E of the model to be globally asymptotically stable, the following 

conditions  1H and  2H must be satisfied: 

   

         

1 0 

1

: ,0 ,  E is globally asymptotically stable.

: , , , 0 for all , , where A= ,0 is an M-matrix

(the off diagonal elements of A are nonnegative).

z

dX
H K X

dt

dZ
H AZ G X Z G X Z X Z D G X Z

dt



   

 

Theorem 3.3:

 

The equilibrium point of the model given by  *

0E ,0X is globally asymptotically stable if 0R 1 and 

conditions  1H  and  2H  is satisfied
.

 

Proof:  

Let 

  *

0 , 0E X and 

 

     
  

     

1 1 1 1

1 2

2 2
2* 1 1 1 1

2
12

2

2

2

(1 ) (1 )
, ,0, , ,
( ) ( )( ) ( )( )

1 ( ( ) )
, ,

( )( )1

1

1

h

h m m m m m

m m w

w m mm m w w

w

m m w w

p b b b

d d d d d

b d d A b
X

d d dd d d d b

b d

d d d d b

   

        

        

       

  

     


   

        


      
 

       

 

     









 
 
 
 



 

Now we verify the conditions  1H  and  2H  as follows: 

 

 

 
 

1

1

2

1

2

(1 )

( )

( )

, ( )
,

( )
(1 ) ( )

( )

(1 )

h h i h

h h h

h

ha hc R h

m

m

v ha hc R

m

v

w w w

w w w

w w w

dS F S
p S R

dt N

I mI nD R

b d A

dK X Z A d M
K X Z

I I D Fdt
A d F

N

bF d A

A M d M

A F d F


  

  

 

 


  



 

  

 
       

 
    
 

   
  

   
     

 
 

  
  
 

    

 20
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 

1

1

2

1

2

(1 )

0

( )

( )

,0

(1 ) ( )

( )

(1 )

h
h h h

h

m

m

m

w
w w w

w
w w w

w
w w w

dS
p S

dt

dE

dt

dA
b d A

dt

dM
A d M

dt
K X

dF
A d F

dt

dA
bF d A

dt

dM
A M d M

dt

dF
A F d F

dt

 

 

 

  



 

  

 
     

 
 
 
 
    
 
 
   
 
 

    
 
 

   
 
 

  
 
 
    
  

                                             (21) 

Then  

1( ) (1 )h h h hS t p S       

1( ) (1 )h h h hS t S p       

 1(1 )h
h h h

dS
S p

dt
       

Using the linear method: the Integrating factor (I.F) of equation (22) is ht
e


 

 1(1 )h h ht t th
h h h

dS
e e S e p

dt

           

   1(1 )h ht t

h h

d
S e dt e p dt

dt

         

 1(1 )h ht t

h hS e e p dt
        

Solving (24), RHS 

 1(1 )ht

he p dt
      

Let  

hw t
 

h

dw

dt
  

h

dw
dt


  

 1(1 )w

h

h

dw
e p


     

 1(1 )h w

h

p
e dw





  
   

 1(1 )
hh t

h

p
e C




  
  

(22) 

(23) 

(24) 

(25) 

(26) 
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Taking (26) into (24), we have  

 1(1 )
h hht t

h

h

p
S e e C

 



  
   

1(1 )
( ) hth

h

h

p
S t Ce





  
   

At 0t  , 1(1 )
(0) h

h

h

p
S C





  
   

1(1 )
(0) h

h

h

p
S C





  
    

Taking equation (28) into (27), gives us 

 1(1 )
( ) (0) 1h ht th

h h

h

p
S t S e e

 



   
  

 

As  1(1 )
, ( ) 29h

h

h

p
t S t





  
 

 
Also taking the third component of (21), we have 

1 ( )m

dA
b d A

dt
      

1( )m

dA
d A b

dt
                     (22) 

Solving equation (22) using the linear method: the Integrating factor (I.F) is 
 md t

e
  

 

    
1

m md t d td
Ae b e

dt

      
  

    
1

m md t d td
Ae dt b e dt

dt

       
 

 
   

 
 

 
1

m

m

d t
d t

d

m

b e
Ae k

d

 
 

 

 
 

 
 

      (23) 

Dividing equation (23) by 
 md t

e
  

, we have  

 
 

 
1

d tm

d

m

b
A t k e

d

 

 

 
 

 
  

As 
 

1,
m

b
t A

d  
 

 
       (24) 

Similarly, solving the third component of equation (24), we have 

1( )m

dM
A d M

dt
           (25) 

Substituting equation (24) in equation (25), we have  

 
1

1( )m

m

bdM
d M

dt d




 
  

 
      (26) 

Solving equation (26) using the linear method: the Integrating factor (I.F) is 
 1 md t

e
 

 

 
 

1

1

( )
( ) 1

m

m

d t
d t

m

b ed
Me

dt d


 

 





 

 

(27) 

(28) 
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 
 

1 1( ) ( )1m md t d t

m

bd
Me dt e dt

dt d

 

 

 


    

 

1

1

( )
( ) 1

1( )

m

m

d t
d t

e

m m

b e
Me k

d d


 

  




 
  

     (27) 

Dividing equation (27) through by 1( )md t
e

 
 

 
 

1

1

( )
( )1

1( )

m

m

d t
d t

e

m m

b e
M t k e

d d




  


 

 
  

  

As  
 

1

1

0,
( )m m

b
t M t

d d



  
 

  
     (28) 

Similarly, 
       
     

  

     

*

1

2

2

2 1 1 2

2

2 1

2

2

2

(1 )
as , , ,

( )( ) ( )

1
,

1 )
 .

1

w
w

m m w

m m m w w

w

w m m w w m m

w

w

m m w w

bFb
t F A

d d d

b d b d d d d b b
M

d d d d d b b d d

b d
F

d d d d b

 

   

          

        

  

     


  

   

         
 

        

 


     

.

 

Hence, 
*X is globally asymptotically stable meaning that the first condition  1H is satisfied. 

 

For condition  2H , we have  

 

1

( )

( )

, ( )

( )

( )

h i h
h h h

h

h h h ha

i ha h hc

ha h R

v ha hc R
m i

v

F S
E

N

E m k I
dZ

G X Z kI I
dt

mI n D

I I D F
d F

N


 

  

 



  

 
  

 
    
 

    
  
 

   
 

                           (29)  

 

From equation (29), it is clear that  

 

0

0

,0 00

0

0

G X

 
 
 
  
 
 
  

  

Furthermore,        ˆ ˆ, , , , ,G X Z AZ G X Z G X Z AZ G X Z     

With  *,0ZA D X is an M-matrix (the off diagonal elements of A are nonnegative). Now let 
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 

 

 

 

 

1

2 1

3 1

4 1

5

h h i h
h h h

h

ha
h h ha
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ha h hc

R
ha h R

v ha hc Ri
m i

v

dE F S
G E

dt N

dI
G E m k n I

dt

dI
G k I I

dt
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From equation (31), it is clear that ˆ ( , ) 0,G X Z  * *since 0  and 0 .h hS S F F     Hence,  2H have been met. 

Therefore, the DFE of the modified model given by 0E is globally asymptotically stable. 

 

4.0 DISCUSSIONS  

For Lymphatic Filariasis, the local asymptotic stability of 

the DFE implies that: 

If the basic reproduction number R0 is less than 1, any small 

outbreak of the disease will not result in a large epidemic. 

Instead, the disease will naturally die out over time. 

Control strategies such as vector control (using chemicals or 

Wolbachia-infected mosquitoes) and treatment can reduce 

R0 to less than 1, making the DFE locally asymptotically 

stable. This means that after interventions, the disease will 

tend to fade away, provided the initial number of infections 

is low. 

When the DFE of Lymphatic Filariasis is locally 

asymptotically stable, it means that if the disease is nearly 

eradicated (i.e., there are only a few cases), it will eventually 

die out completely, and the population will return to a state 

without the disease, assuming no large new outbreaks occur. 

This stability is crucial for understanding how interventions 

(like medication or mosquito control) can lead to long-term 

disease elimination as in section 3.4 

 

5.0 CONCLUSIONS 

In this paper, we developed a mathematical model which 

incorporated some important factors 

That plays significant role in the transmission dynamics and 

control of Lymphatic filariasis. These are: chemical control, 

biological control. We obtained the basic reproduction 

numbers, 0R  . Our analysis reveals that the disease can be 

control if the basic reproduction number, 0R is less than one 

regardless of the initial population profile. Thus, every effort 

must be put in place by all concerned to prevent the disease 

by reducing  0R  strictly less than unity. 

Finally, there is need for further research work on the 

optimal control strategy on the use of chemicals and 
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biological control on the transmission dynamics of 

Lymphatic filariasis disease 
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