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Lassa fever is a viral hemorrhagic disease primarily transmitted through contact with food or 

household items contaminated by urine or feces of infected rodents. The disease poses a 

significant health risk in endemic regions, yet the effect of vertical transmission and non-linear 

treatment on its spread has not been thoroughly explored. To address this, a mathematical model 

was constructed to assess the effect of vertical transmission and non-linear treatment in the 

transmission dynamics of Lassa fever. The model was validated through the theory of positivity 

and boundedness, ensuring that its solution remains biologically meaningful over time. The 

existence of equilibrium points was examined and the basic reproduction number  was 

calculated using the next generation matrix operator. Bifurcation analysis is performed using 

the Center Manifold Theory. The Local and global stability of the model around the Lassa fever 

free equilibrium is investigated using Jacobian Matrix method and the theorem proposed by 

Castillo-Chavez. The effect of the parameters of the basic reproduction number  was 

investigated using normalized forward sensitivity index. Furthermore, it was inferred that 

decrease in the contact rate and the rate of vertical transmission were instrumental to curtailing 

the spread of Lassa fever in the population. 

KEYWORDS: Mathematical model; Lassa Fever; Vertical transmission; Nonlinear treatment; Stability; Lyapunov function; 

Bifurcation. 

 

1. INRODUCTION  

The Lassa virus, which belongs to the Arenavirus family, is 

the cause of Lassa fever, an acute hemorrhagic disease. 

Usually, the virus is spread to humans by consuming food or 

household objects tainted with the urine or feces of infected 

Mastomys rats. In the 1950s, the illness was initially 

discovered in Africa, more precisely in Sierra Leone. But it 

wasn't until 1969 that the virus that caused the deaths of two 

missionary nurses in Nigeria, West Africa, was discovered. 

The location of Lassa in northern Nigeria, where the first 

cases were found, inspired the name of the virus (Frame et al. 

1970; Buckley et al. 1970).Numerous Lassa virus infection 

outbreaks have been documented in Nigeria since its 

discovery, with reports coming from Jos, Onitsha, Zonkwua, 

Abo Mbaise, Owerri, Epkoma, and Lafia (Carey et al. 1972; 

Monath 1975). Other West African nations, such as Guinea, 

Mali, Senegal, Sierra Leone, and Liberia, have also reported 

Lassa fever outbreaks and consequences (Frame 1970; 

Monath 1973, 1975). In addition, there are only a few known 

instances of Lassa virus spreading to other countries, mostly 

through international travel (Holmes et al. 1990; Higazy et al. 

2021; Schmitz et al. 2002; Johnson et al. 1990). 

 The Lassa virus is categorized as a segmented 

negative-strand RNA virus and is a member of the Arenavirus 

family. About 23 viral species make up the Arenavirus 

family, which is separated into large complexes based on 

phylogenetic and serological analysis. These complexes 

include the Old World and New World complexes (Charrel 

and Lamballerie 2003; Wulff et al. 1978). The antigenicity, 

geographic distribution, natural hosts, and propensity for 

human disease development of these virus species vary. 

Although the majority of arenaviruses do not cause illness in 

humans, the Lassa virus can cause viral hemorrhagic fever, 

which manifests as chest, stomach, nausea, vomiting, sore 

throat, and muscle aches (Centers for Disease Control and 

Prevention, CDC 2004).While the majority of instances are 

minor or asymptomatic, extreme cases can have catastrophic 

consequences. The Lassa virus usually infects humans when 

they come into contact with the urine or feces of infected 

Mastomys rats. Furthermore, direct contact with an infected 

0R

0R

https://doi.org/10.47191/ijmcr/v12i11.08


“Epidemiological Implications of Vertical Transmission and Nonlinear Treatment in Lassa fever: A Mathematical 

Study” 

4598 T.O. Oluyo1, IJMCR Volume 12 Issue 11 November 2024 

 

person's blood, urine, feces, or bodily fluids can spread the 

virus from person to person. The virus may be transmitted 

from person to person by contaminated medical equipment in 

both community and clinical settings (WHO, 2023). 

Although Lassa hemorrhagic fever outbreaks can happen at 

any time of year, they tend to happen more frequently during 

the dry season.Furthermore, it is possible for individuals to 

transport Lassa fever from an endemic area to a non-endemic 

area during the incubation period, potentially leading to new 

outbreaks.  

     A crucial tool used for studying the dynamical 

spread of infectious disease in the human population is 

mathematical modeling (Adepoju and Ibrahim, 2024; 

Adepoju et al., 2024; Olaniyi et al 2018) and numerous 

models have been studied to analyze the spread dynamics of 

Lassa Fever in order to mitigate its dynamical spread. Favour 

and Okeke (2020) investigated a mathematical model for 

Lassa Fever transmission and control by buttressing the 

various stages of infection. Their finding revealed that 

quarantine system has a great positive effect on the rate of 

recovery of the infected individuals and also in curbing the 

risk of infection in the environment which can help safeguard 

the population. Ibrahim and Attila (2021) investigated 

mathematical model for Lassa fever transmission dynamics 

in a seasonal environment with a view to the 2017–2020 

epidemic in Nigeria. Omoloye et al. (2021) investigated the 

modeling and sensitivity analysis of dynamical transmission 

of Lassa Fever while Olowu and Ako (2021) investigated the 

impact of reduced infection on Lassa Hemorrhagic Fever 

transmission dynamics. Ojo and Emile (2020) studied the 

impact of simulation on the dynamics of Lassa Fever in 

Nigeria. Their result showed that combined controlled 

parameters made the total infected human population decline 

faster and thus reduces Lassa fever’s burden on the 

population. Popoola et al. (2022) addressed the impact of 

Lassa Fever in West Africa from a mathematical modeling 

approach.  

In another development, Ogwu et al. (2022) studied 

the effect of Lassa Fever in Nigeria by considering the social 

and ecological risk factors exacerbating transmission and 

sustainable management strategies. Musa et al. (2022) 

investigated mathematical analysis of Lassa fever epidemic 

with effects of environmental transmission. Madueme et al. 

(2022) employed the mathematical modeling approach to 

study the effect of the transmission pathways of Lassa Fever. 

Abdulrahim et al. (2023) investigated the recurring outbreaks 

of on Lassa Fever in Nigeria while Omale et al. (2024) 

investigated various epidemiological aspects of Lassa fever 

viral infection using a fractional order mathematical model. 

Ibrahim et al. (2024) investigated the effect of delay 

techniques on a Lassa Fever epidemic model 

        It is pertinent to state that this research is aimed at 

curbing the menace of vertical transmission and the impact of 

nonlinear treatment in the human population. The 

organization of this work is as follows: Section 2 presents the 

full description of the model. The Analytical solution of the 

model is presented in Section 3 and numerical simulations of 

the system are performed in Section 4. Concluding remarks 

are wrapped up in  Section 5.    

 

2. MODEL FORMULATION  

The total human population denoted by  is subdivided into four mutually exclusive classes of Susceptible humans denoted 

by , which describes the population of susceptible human who are prone to Lassa fever; Exposed humans, denoted by 

; Infected humans, denoted by  and recovered humans, denoted by . Therefore, the total human population is given by   

 

The total rodent population denoted by  on the other hand was divided into susceptible rodents denoted by  and 

infectious rodents denoted by respectively. Then, the total rodent population is given by   

 

The susceptible compartment  increases due to the recruitment of individuals into the population at a rate . The 

compartment decreases following the standard incidence rates   and   where  and  are the effective contact 

with infectious.  

The human population is further reduced by the natural death at a rate . Therefore, the rate of change of the population 

of susceptible human is given as  
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The exposed human compartment is increased by the standard incidences  and  respectively. The population is 

decreased by the progression of exposed individuals to infectious 

class at a rate and further reduced by the natural death at a rate .  

Therefore, the rate of change of the exposed human is given by  

                                                 

In a similar manner, the population of   infectious human increases due to progression of exposed individuals to infectious 

class at a rate . The population reduces due to natural death rate  and Lassa fever induced death at a rate . The population 

reduces as infectious human are treated at a non-linear rate . Therefore, the rate change of the population of infectious 

human is given by  

                                                                              

The recovered human population is increased due to progression of non-linear treatment of infectious human from the 

infectious class at rate . Therefore, the rate of change of the population of recovered is given by   

                                                                                               

Recruitment into the susceptible rodent population is at a rate . The compartment decrease following the standard 

incidence rate , where  is the effective contact rate with infectious rodent. The population is further reduced as a result 

of natural death at a rate . Therefore, the rate of change of susceptible rodent population is given by  

                                                             

The population of infectious rodents increases by standard incidence . The population reduces due to the natural 

death of rodents at a rate  and induced death at a rate . Therefore, the rate of change of the population of infectious rodents is 

given by, 

                                                                           

 Therefore, the mathematical model governing the transmission dynamics of Lassa fever is presented as follow 
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The state variables (9) are subject to the initial conditions:  

 

Table 1: Description of Variables  

Variables Description         

      Susceptible humans 

      Exposed humans 

      Infected humans 

      Recovered humans 

      Susceptible rodents 

      Infected rodents 

 

 

Figure 1: The Schematic Diagram Describing the Dynamic Spread of Lassa Fever 

 

Table 2: Description of parameters of the model 

  Parameters Description 

      Recruitment rate into human population 

      Rodent to human transmission rate 

      Human to human transmission rate 

      Rodent to rodent transmission rate 

      Natural death rate of human 

       Progression rate from exposed class to infected class 

      Recruitment rate into rodent population 

      Natural death rate of rodent 

        Recovery rate in human population 

        Delay in treatment in infected human population 

        Induced death rate of human 

        Induced death rate of rodent 

       Vertical transmission in rodent population  
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3. ANALYSIS OF THE LASSA FEVER MODEL 

3.1 The Invariant region 

The Lassa fever model (9) will be analyzed in a biologically feasible region D defined as follows.  This region can be 

shown to be positively invariant and attracting for all positive solution of the Lassa fever model.  

 

 

 

Theorem 1:    Let  be the solution of Eq.(1) with initial condition in a feasible region then 

 is positively- invariant. 

Proof: Let the total human and rodent  population be denoted by  and . Then the rate of change of human  population  gives  

 

So that , 

                                                                                                                

Then, by standard technique it follow that  

                                                                               

Similarly, the total rodent population gives                                                                                                

 

  If  and , then  and .Then the region D is positively invariant. 

Furthermore, if  and , then  the solution enters D in finite time. Hence the feasible region D is 

attracting. 

3.2. Positivity of solutions  

Since the mathematical model (9) governing the transmission dynamics of Lassa fever 

 virus considers both human and rodent populations, then it is important that all its state variables and associated parameters are 

non-negative for all time, 𝑡. Hence, the following result holds for all the state variables in the mathematical model 

Theorem 2. The solutions of Lassa fever virus model (1) given by the set  with non-negative initial conditions 

remain non-negative for every time 𝑡 > 0 

Proof. The first compartment of model (1) is considered so that 

 

This implies that 

, for all 𝑡 > 0.     

Following the same procedure, it can be shown that the remaining state variables , , , ,
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3. Equilibrium Points and Stability Analysis  

3.3.1.Disease-free Equilibrium  

        The disease-free equilibrium point is a stable position where the entire population has no infection.    Then at steady state, the 

Lassa fever model (9) has a disease-free equilibrium point. 

              

 

The basic reproduction number  is calculated using the approach of (Driessche and Watmough, 2002; Chitnis et al. 2008) The 

transmission matrix  and transition matrix  obtained at Lassa fever free equilibrium   are given as follows: 

                      

And 
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Then the spectral radius of   is the basic reproduction number given as 

. 

Where  and  

 

Theorem 2: The Lassa fever free equilibrium point is locally asymptotically stable whenever the basic reproduction number   is 

less than unity.  

Proof : The Jacobian matrix of  Lassa fever model (9) obtained at   is given as 

 

Obviously, three of the eigenvalues of (14) is obtained as   and the remaining are obtained from the polynomial 
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where 

        

 

  

Clearly, the polynomial (15) is the solution of the Jacobian matrix (14). Then following Descarte’s rule, all the coefficient of the 

polynomial are positive. It can be concluded that all the eigenvalues of the Jacobian matrix are negative, real and distinct. Hence, 

the disease-free equilibrium of the Lassa fever model (9) is locally asymptotically stable. 

3.3.2 Global stability of Lassa fever free equilibrium 

In order to proof the theorem, the comparison test method by Castillo Chavez and Song (2004) is used. This implies that the model 

(9) must be rewritten in the form 

                                                             

Where  and .  X component represent the uninfected class while Z represent the infected class i.e. 

 and  

Let the Lassa fever free equilibrium of the model be given by  Then the following properties must be satisfied in order 

to establish the global stability of the model  

 For ,  is globally asymptotically stable 
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Where , which is an M-matrix evaluated at  with non-negative off diagonal entries. 

Theorem 3: The Lassa fever free equilibrium of the model (9) is globally asymptotically stable if the basic reproduction number is 

less than one  
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Hence irrespective of the initial value of the variables as .Therefore, is 

globally asymptotically stable satisfying  

Also,  is obtained as 

   

Since  and . It is obvious that . Hence the Lassa fever free equilibrium of model (9) is not globally 

asymptotically stable due to the delay in treatment . 

3.3.3. Existence of endemic equilibrium  

The endemic equilibrium state is the point where there is presence of disease in the population. Let the endemic equilibrium point 

be denoted by  and  and  be the force of infection such that Then, at 

steady states 

 

Solving system (9) simultaneously yields 
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Table 3 Shows positive root of for and  

Case      No of Signs changed Positive real roots changed 

1 + + + -  1 1 

2 + + + +  0 0 

3 + - - -  1 1 

4 + - - +  2 0,2 

5 + + - -  1 1 

6 + + - +  2 0,2 

7 + - + -  3 1,3 

8 + - + +  2 0,2 

 

The values of are obtained from the cubic polynomial 

 

where 

 

 

 

 

Theorem 3: The system has a unique endemic equilibrium if and cases 1,3,5 are satisfied and could have more than one 

endemic equilibrium if and case 7 is satisfied. Furthermore, system has no endemic equilibrium if  and case 2 is 

satisfied and could have two endemic equilibrium if  and cases 4,6,8 are satisfied. 

3.3.4. Bifurcation analysis 

Here, the Center Manifold Theory by Castillo Chavez and Song (2004) is used to establish the bifurcation phenomenon of 

the model whether the model will exhibit forward or backward bifurcation. 

The model can be rewritten in the vector form , where  and  , such that 
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Recall, 

 

Let the bifurcation parameter   be chosen so that , iff  

                                                                                                  

The Jacobian matrix of the system  evaluated at  and  is given by  

 

Then the resulting eigenvalues are obtained as follows 

                                                                                                                                          

Since one of the eigenvalues of the polynomial equals zero, this implies that there exist a simple zero eigenvalues of the Jacobian 

matrix evaluated at   and  while remaining eigenvalues have negative real parts following Descarte’s rule of signs. 

Let the right eigenvector be denoted by . Then, the right eigenvector corresponding to the simple zero 

eigenvalue is obtained as follows 
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Solving (26) simultaneously, the following result is obtained 

 

 

  

 

,  

     ,

 

In a similar manner, let  be the associated left eigenvector of (24) at . Then the left eigenvector 

is given as  

 

              

Solving (27) simultaneously yields the following result 
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Following the approach of Castillo-Chavez and Song (2004),                  
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Substituting the above expressions into  “a’’  and  “b’’  gives 

a  

b  

The nature of bifurcation of system (9)  is determined by sign of coefficient “a’’, given that coefficient “b’’ is non-negative. If “a’’ 

is non-negative, backward bifurcation occurs. 

This coefficient ‘‘a’’ is non-negative if and only if 

b  

b  

 Hence the following result was established. 

Theorem 3.7: The model (9) exhibits backward bifurcation if (28) holds. 

3.3.5. Sensitivity analysis 

Sensitivity analysis and simulations are essential for identifying the most effective strategies to reduce Lassa fever’s impact 

by assessing the significance of various factors influencing its spread and prevalence, based on model parameters. The normalized 

forward sensitivity index quantifies the ratio of the relative change in a variable to the relative change in the corresponding parameter 

(Chitnis et al. 2008). In this analysis, the sensitivity indices of the basic reproduction number  are evaluated relative to their 

associated parameters  is defined as: 

 

The sensitivity indices of  relative to the associated parameters is calculated and the result is presented in Table 4. It is 

observed that the parameters with positive sensitivity indices will increase the basic reproduction number while those with negative 

sensitivity indices will reduce the basic reproduction number. 

 

Table 4: Sensitivity indices of basic reproduction number relative to its parameters 

Parameters                                         Sensitivity indices 
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                                               -0.677507                               

                                             
 

                   

4. NUMERICAL SIMULATION 

As depicted in Figure 4.1, increase in the values of human to human transmission rate.  and increase in the value of 

progression rate of exposed human to infected class, , resulted into corresponding increase in the basic reproduction number 

which will lead to the persistence of the spread of Lassa fever in the population of both human and rodent. Figure 4.2 increase in 

the value of human induced death rate, , and increase in the value of  human natural death rate, , will lead to decrease in the 

basic reproduction number leading to reduction in the spread of Lassa fever in the human population.  Also in Figure 4.3, increase 

in the value of rodent induced death rate, , and increase in the value of rodent natural death rate, , will lead to decrease in the 

basic reproduction number of the Lassa fever leading to the reduction in the spread of Lassa fever in the population. 

Figure 4.5 shows the effect of delay in treatment on the infected class and Figure 4.6 depicts the effect of vertical 

transmission on the infected rodents. An increase in the delayed in treatment of infected humans and vertical transmission rate of 

infected rodents leads to the increase in the population of infectious humans and infectious rodents in the population. 

 

Figure 4.1: Effect of  and  on basic reproduction number 

 

 

Figure 4.2: Effect of  and  on basic reproduction number  
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Figure 4.3: Effect of  and  on basic reproduction number 

 

Figure 4.5: Effect of varying values of delay in treatment  in infected human 

 
Figure 4.6: Effect of varying values of vertical transmission  in infected rodents 

 

5. CONCLUSION 

In this study, a mathematical model incorporating 

vertical transmission and nonlinear treatment was formulated 

and analyzed using a system of ordinary differential equation 

to provide deeper insights into the transmission dynamics of 

Lassa fever in the population. The model was stratified into 

two populations. Susceptible individuals, exposed 

individuals, infected individuals and recovered individuals 

make up the human population. Also, the rodent population 

is classified into two compartments: Susceptible and infected 

rodents. The model took into account vertical transmission 

and nonlinear treatment 

The analytical solution of the model yielded the 

Lassa Fever free equilibrium point. Using the next generation 

matrix approach, the basic reproduction number was 

computed. The model was shown to be locally asymptotically 

stable whenever the basic reproduction number is less than 

unity by employing the linearized Jacobian method while the 

M-matrix approach was used to determine the global 

asymptotic stability of the disease-free equilibrium. The 

center manifold theory was used to establish the bifurcation 

analysis and was shown to exhibit backward bifurcation.  

Additionally, the influence of the parameters of the 

basic reproduction number was investigated using the 

normalized forward sensitivity index. It was deduced that 

parameters with positive sensitivity indices will mitigate the 

persistence of Lassa Fever in the population while those with 

negative indices will help in curbing the menace of Lassa 

Fever in the human population. Furthermore, efforts should 

be made by policy makers and healthcare worker to increase 

the value of parameters with negative indices. The values 
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used in this study are obtained from already existing literature 

on Lassa Fever while some are assumed.  
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