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Abstract. In 1930, E. Szpilrajn proved that any order relation on a set X can be

extended to linear order on X. It also follows that order relation is the intersection

of its linear extensions. In 1941 Dushnik and Miller introduced the concept of

dimension of a poset (X,P ), denoted Dim(X,P ), as the smallest positive integer

n for which there exist linear extensions L1, L2, ..., Ln of P so that P = L1 ∩ L2 ∩
...∩Ln. In this paper, we do literature survey of the research articles on dimension

theory of posets. This survey provides an overview of key concepts, results, and

challenges in dimension theory of posets. The survey also examines advanced topics

like fractional dimension, geometric representations, and topological considerations.

Open problems and future research directions, emphasizing the interdisciplinary

potential of dimension theory in mathematics and computer science.
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1. INTRODUCTION

In 1930, Szpilrajn [1] proved that any order relation on a set X can be ex-
tended to linear order on X. It also follows that order relation is the intersection
of its linear extensions. If R is family of linear orders (chains) whose intersection
is the order relation ≤, then R is a realizer of ≤. In 1941 Dushnik and Miller
[2] defined dimension of an ordered set P = (x;≤) to be the minimum number of
linear extension whose intersection is the ordering ≤. In 1951 T. Hiraguchi [5] show
that a poset is d-irreducible if it has dimension d and removable of any element
lowers its dimension. In 1970 Baker [7] showed that a finite lattice is planar exactly
when its dimension does not exceed 2. In 1974 Trotter Jr. [10] proved that the
dimension of a crown is 2(n + k)/(k + 2). In 1977 Trotter and Moore [15] proved
that the dimension of a bounded planar poset is at most two. They also proved
the dimension of a planar poset having a greatest lower bound is at most three. In
1989 Schnyder [23] proved that each planar graph has dimension at most three.
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2. PRELIMINARIES

Definition 2.1. A partially ordered set(or poset) is a set P of elements together
with a binary relation ≤ on P which is reflexive, antisymmetric and transitive.

Definition 2.2. A lattice is a poset in which every pair of elements has a least
upper bound and a greatest lower bound.

Definition 2.3. Two elements a, b ∈ P are comparable if either a ≤ b or b ≤ a.
Two elements of P are said to be incomparable if they are not comparable. If x and
y are incomparable in P then we denote it by x ‖ y.

Definition 2.4. A chain(or linear order) is a lattice in which any two elements
are comparable.

Definition 2.5. The incomparable pair < a, b > is called a critical pair if x < b
implies x < a, and x > a implies x > b.

Definition 2.6. Let (P,≤) be an ordered set. Then v is called a linear extension
of ≤ if and only if v is a total order and it contains ≤.

Definition 2.7. Let (P,≤) be an ordered set. Then a family {≤i}i∈I of linear
orders ≤i on P is called a realizer of ≤ if and only if ≤=

⋂
i∈I
≤i.

Definition 2.8. Let (P,≤) be an ordered set. Then (P,≤) is of (linear) dimension
k and we write Dim(P,≤) = k if and only if k ∈ N is the smallest natural number
such that there is a realizer for ≤ that has k orders.

Definition 2.9. The fractional dimension, denoted by fdim(P ), and defined as
the limit of t(k)/k as k → ∞. Note that fdim(P ) is also the infimum of the set
{t(k)/k}, and so, in particular, fdim(P ) ≤ t(1)/1 = dim(P ).

Definition 2.10. Poset P = (X,≤) is called an interval order if it can be repre-
sented as a set of intervals of the real line so that for x, y ∈ X we have x < y if
and only if the interval corresponding to x is entirely to the left of the the interval
corresponding to y.

Definition 2.11. The pair (B, τ) is a Boolean realizer when for each pair x, y of
distinct elements of P, x < y in P if and only if τ(q(x, y,B) = 1. The Boolean
dimension of P, denoted bdim(P ), is the least positive integer d for which P has a
Boolean realizer (B, τ) with |B| = d.

Definition 2.12. A non-empty family L of partial linear extension’s of a poset P
is called a local realizer of P if the following two conditions are satisfied:
(1) If x ≤ y in P , there is some L ∈ L for which x ≤ y in L;
(2) if (x, y) ∈ Inc(P ), there is some L ∈ L for which x > y in L.
The local dimension of P , denoted ldim(P ), is defined as ldim(P ) = min{µ(L) :
L is a local realizer of P}.
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3. Literature survey

In 1930, Szpilrajn [1] proved that any order relation on a set X can be ex-
tended to linear order on X. It also follows that order relation is the intersection
of its linear extensions. If R is family of linear orders (chains) whose intersection
is the order relation ≤, then R is a realizer of ≤.

In 1941 Dushnik and Miller [2] defined dimension of an ordered set P = (x;≤)
to be the minimum number of linear extension whose intersection is the ordering
≤. They discusses the properties of partial orders, including their dimensions, the
relationship between partial orders and linear orders, and the representation of
partial orders using intervals on a linearly ordered set.

In 1948 Horace Komm [3] proved that every finite or denumerable partial
order is similar to some subset of Pn (or P ′n). The dimension of Pn(En) is n,
where n is at least ℵ0. The A-dimension of P ′n(En) exists for every finite n, and
the A-dimension of P ′2(E2) is ℵ0. The A-dimension of Pn(En) and P ′n(En) is c, the
power of the continuum, for every finite n. If Mn is a subset of En that has at most
one point in common with any vertical (except for a denumerable set), then the
A-dimension of Pn(Mn) or P ′n(Mn) is at most n. He discusses the properties, di-
mensions, and relationships of partial orders, including their connections to subsets
of Euclidean spaces.

In 1950 R. P. Dilworth [4] proved that the every set of k + 1 elements of
a partially ordered set P be dependent while at least one set of k elements is
independent. Then P is a set sum of k disjoint chains. He also proved that let D be
a finite distributive lattice. Let k(a) be the number of distinct elements in D which
cover a and let k be the largest of the numbers k(a). Then D is a sublattice of a
direct union of k chains and k is the smallest number for which such an imbedding
holds.

In 1951 Toshio Hiraguchi [5] proved that let a poset P be decomposable to
a sum

∑
s Ps and σ an element of S such that D[Pσ] ≥ D[Ps] for all s ∈ S. If

D[Pσ] ≥ D[S], then the set P −Pσ is d-removable. If D[Pσ] < D[S], then P −P ∗ is
d-removable, where P ∗ = {xs|s ∈ S} is a set whose element xs is an element selected
arbitrarily from the set Ps. He also prove that if D[P ] ≥ 3, then 2D[P ] ≤ n[P ]. In
other words, in order to define a poset of dimension n a set of power 2n is necessary.

In 1955 Toshio Hiraguchi [6] gave the result for if P be an order defined on
set A and B a subset of A. Then there exists a right (left) linear extensions of P
with respect to B, if and only if B is a linear(P) subset of A. He also gave the
result for let P be an order defined on a set A and B and B′ two linear(P) subsets
of A such that B is order-disjoint (P) upwards (downwards) to B′ Then there exists
a linear extension of P which is both right(left) with respect to B and left (right)
with respect to B′.

In 1970 Baker, et al. [7] proved the result for suppose ≺ is a partial order
on a finite set X and ∼ is its incomparability relation. Then all of the following
statements are equivalent:(a) D(≺) < 2. (b) There is a conjugate partial order
≺∗ on X. (c) There is a nonseparating linear extension of ≺. (d) (X,∼) is a
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comparability graph. (e) Every odd ∼ -cycle has a triangular chord. (f) (X,≺) has
no comparability cycle. (g) L(X,≺) has a planar Hasse diagram. (h) ≺ is realizable
as the partial order of inclusion on a set of intervals in some linear order. (i) ≺
satisfies the weak interval condition.

In 1973 Kenneth P. Bogart [8] provides a new proof of Hiraguchi’s Theorem,
which states that the dimension of a partially ordered set with n elements is at
most the greatest integer less than or equal to n

2 . The key lemma in the new proof
is that a partially ordered set either has a cover of rank 0 or a pair of covers with
elements of one incomparable with elements of the other. The new proof uses an
inductive approach, verifying the theorem for small sets and then reducing larger
sets to smaller ones by removing certain structures. In 1973 Kenneth P. Bogart and
Willim T. Trotter, Jr. [9] The only “maximal dimensional” partially ordered sets
with 2n elements and dimension n, then it is isomorphic to the set of n− 1 element
subsets and element subsets of a set, are the Dushnik-Miller example and the six
element chevron ordering. The theory of partially ordered sets of dimension n is not
finitely axiomatizable in first order logic, in contrast with the finite axiomatization
of distributive lattices of dimension n. They provide a detailed characterization of
the maximal dimensional posets, involving an examination of covering pairs and
the use of several key lemmas.

In 1974 Willim T. Trotter Jr. [10] introduced a concept of dimension of a

crown is 2(n+k)
k+2 . He also proved that for each n > 3 there exist infinitely many

nonisomorphic irreducible posets of dimension n. In 1974 David Kelly and Ivan
Rival [11] proved that every finite lattice is either dismantlable or contains a crown,
but not both. A modular lattice of finite length is dismantlable if and only if it has
breadth 2 (or equivalently, it contains no crown of order 6). A finite distributive
lattice is dismantlable if and only if it is planar.

In 1975 Willim T. Trotter [12] introduces new inequalities involving the di-
mensions of posets and their subsets, particularly focusing on the relationships
between dimension, width, and the presence of maximal elements or antichains.
For example, he establishes that (dim(X,P ) ≤ |X − A|) where A is an antichain,
and (dim(X,P ) ≤ 1 + width(X − E)) where E is the set of maximal elements.
These inequalities not only extend existing knowledge but also provide a frame-
work for analyzing the structural properties of posets in various configurations. In
1975 Kelly and Rival [13] proved that a finite lattice is planar if and only if it does
not contain any lattice in L as a subposet. Moreover, L is the minimum such list;
that is, if F is a set of lattices such that the first assertion remains true with L
replaced by F , then L ⊆ F .

In 1977 Trotter and Moore [15] proved that the dimension of a bounded planar
poset is at most two. They proved the dimension of a planar poset having a greatest
lower bound is at most three. They also proved that the dimension of a tree is at
most three. They gave a new concept called ”stable dimension” is introduced as a
generalization of the dimension of a partially ordered set (poset). The main theorem
shows that the stable dimension is equal to the maximum number of elements in a
pair of antichains (sets of incomparable elements) of the poset, where one set lies
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above the other. The stable dimension can be used to find improved bounds on the
dimension of the poset compared to previous results.

In 1978 I. Rabinovitch [16] investigated the structure of semiorders and in-
terval orders, and gave various characterizations. Then by using these ideas he
proved that the dimension of a semiorder is at most 3, characterize semiorders of
dimension 3 and height 2, and proved Hiraguchi’s result, let (X,P ) be a poset with
|X| ≥ 4. Then d(p) ≤ 1

2 |X|.
In 1981 Babai and Duffus [17] proved that for each positive integer k there is

an integer M(k) such that if L is a finite modular lattice with dim(L) < k and the
order of the automorphism group Aut(L) is divisible by a prime p > M(k) then
there is a cover-preserving embedding of Mp in L.

In 1982 Bennett [18] gave necessary and sufficient conditions on a lattice L
which guarantee it’s being the lattice of faces of the n-dimensional cube. In 1982
Felsner, et al. [19] proved that the decision problem (3DH2) for dimension is equiv-
alent to deciding for the existence of bipartite triangle containment representations
(BTCon). This problem then allows a reduction from a class of planar satisfiability
problems (P − 3− CON − 3− SAT (4)) which is known to be NP-hard.

In 1983 Kelly [20] proved that planar posets have arbitrary finite dimension.
He has presented two new families of irreducible posets and proved that finite
dismantlable lattices have arbitrary finite dimension. He also introduced the di-
mension product construction in. He proved that P ⊗ 2, the dimension product
of a 3-irreducible poset P and a 2-element chain, is 4-irreducible. In 1983 Spinrad
and Valdes [21] gave proof for the recognition of two dimensional partial orders:
the problem of determining whether the dimension of a given partial order is less
than or equal to two. Determining whether a partial order has dimension one is
a trivial problem since it must be a total order. Determining the dimension of a
partial order is NP-complete for dimension greater than two.

In 1989 Schnyder [23]proved that each planar graph has dimension at most
three. In 1991 Erdos, et al. [24] proved that for every ∈> 0, there exist δ, c > 0
so that if (log1+∈ n)/n < p ≤ 1/ log n, then dim(P ) > δpn log pn for almost all
P ∈ Ω(n, p) and if 1/ log n ≤ p < 1 − n−1+∈, then dim(P ) > n − cn/p log n for
almost all P ∈ Ω(n, p). They also studied the space L(n) of all labelled ordered
sets on n points and showed that there exist positive constants c1, c2 so that
n/4− c1n/ log n < dim(P ) < n/4− c2n/ log n for almost all P ∈ L(n).

In 1992 Brightwell and Scheinerman [25] proved that for any graph G we have
fdim[P (G)] ≤ 3 with equality holding if and only if G contains a triangle. They
also proved the fractional dimension of Skn is 2n/(k + 1).

In 1994 Felsner and Trotter Jr. [26] proved that when w ≥ 3, the fractional
dimension of a poset P of width w is less than w unless P contains Sw. If P is
a poset containing an antichain A and at most n other points, where n ≥ 3, they
show that the fractional dimension of P is less than n unless P contains Sn. If P
contains an antichain A such that all antichains disjoint from A have size at most
w ≥ 4, then the fractional dimension of P is at most 2w, and this bound is best
possible.
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In 1998 Bayoumi, et al. [27] described an algorithm for solving the problem
of recognizing the dimension of a poset P , dim(P ). In 1999 Hosten and Morris
Jr. [28] proved that the order dimension of the complete graph on n vertices is the
smallest integer t for which there are n antichains in the subset lattice of [t − 1]
that do not contain [t− 1] or two sets whose union is [t− 1].

In 2013 Baym and West [29] studied the k-dimension of products of finite
orders. For k ∈ o(ln n), the value 2dimk(P )−dimk(P×P ) is unbounded when P is
an n-element antichain, and 2dim2(mP )−dim2(mP×mP ) is unbounded when P is
a fixed poset with unique maximum and minimum. For products of the “standard”
orders Sm and Sn of dimensions m and n, dimk(Sm×Sn) = m+n−min{2, k−2}.
For higher-order products of “standard” orders, dim2(Πt

i=1Sni
) =

∑
ni if each

ni ≥ t. In 2013 Bosek, et al. [30] they analyzed the on-line dimension of partially
ordered sets as a value of a two-person game between Algorithm and Spoiler. The
game is played in rounds. Spoiler presents an on-line order of width at most w, one
point at a time. Algorithm maintains its realizer, i.e., the set of d linear extensions
which intersect to the presented order. Algorithm may not change the ordering of
the previously introduced elements in the existing linear extensions. The value of
the game val(w) is the least d such that Algorithm has a strategy against Spoiler
presenting any order of width at most w. For interval orders Hopkins [22] showed
that val(w) ≤ 4w − 4. They analyze the on-line dimension of semi-orders i.e.,
interval orders admitting a unit-length representation. For up-growing semi-orders
of width w they prove a matching lower and upper bound of w. In the general (not
necessarily up-growing) case we provide an upper bound of 2w.

In 2015 Felsner, et al. [31] they continued the study of conditions that bound
the dimension of posets with planar cover graphs. They showed that if P is poset
with a planar comparability graph, then the dimension of P is at most four. They
also showed that if P has an outerplanar cover graph, then the dimension of P is
at most four. Finally, if P has an outerplanar cover graph and the height of P is
two, then the dimension of P is at most three. These three inequalities are all best
possible.

In 2017 Joret, et al. [32] proved that every poset whose cover graph has
treewidth at most 2 has dimension at most 1276. In 2018 Kim, et al.[33] proved that
the maximum local dimension of a poset on n points is Θ(n/log n). They also proved
that the local dimension of the n-dimensional Boolean lattice is Ω(n/log n). In 2018
Scoot and Wood[34] proved that the boxicity of a graph G is the minimum integer
d such that G is the intersection graph of d-dimensional axis-aligned boxes. They
proved that every graph with maximum degree ∆ has boxicity at most ∆log1+o(1)∆,
which is also within a logo(1)∆ factor of optimal. They also show that the maximum
boxicity of graphs with Euler genus g is Θ(

√
g log g).

In 2020 Barrera-Cruz, et al. [35] proved that the Boolean dimension of a
poset is bounded in terms of the tree-width of its cover graph, independent of its
height. They show that the local dimension of a poset cannot be bounded in terms
of the tree-width of its cover graph, independent of height. They also prove that
the local dimension of a poset is bounded in terms of the path-width of its cover

"A SURVEY OF DIMENSION OF POSETS"

4767



graph. In 2024 Ashok Bhavale [36] proved that the dimension of a dismantlable
lattice is at most three.

4. OPEN PROBLEMS

In 1955 Toshio Hiraguchi [6] raised the following problems.

(1) Let P be an order defined on a set A and a a maximal(P) element of A.
If there exists one and only one element b such that (b : a) ∈ P , then a is
d-removable. It may be proved easily that if, moreover, either no element
other than b exceeds (P )a or the suborder P (A− a) is d-irreducible, then
a is d-removable.

(2) It is not possible to define a d-irreducible order on a set whose cardinality
is an odd integer.

In 1976 Trotter [14] raised the following problems.

(1) Determine whether doubly irreducible posets exist.
(2) Give a forbidden subposet characterization of Dim(X) ≤W (X).
(3) Determine condition on X which insure that DimS(X) = 1 +Dim(X).
(4) For each n ≥ 1, does there exist an n-dimensional poset X for which X×X

is also n-dimensional?

In 1977 Trotter and Moore [15] raised the following problems.

(1) Determining the maximum possible dimension of a planar poset.
(2) Constructing a planar poset with dimension greater than four.
(3) Exploring the connection between the authors’ results on the dimension of

trees and previous work.

In 1981 Babai and Duffus [17] raised the following problems.

(1) Find lattice varieties V with the following property: for every N there exists
a finite group G such that if Aut(L) ∼= G for some finite lattice L ∈ V then
dim(L) > N .

(2) The automorphism groups of finite modular lattices of bounded dimension
do not represent every finite group.

(3) Characterize the automorphism groups of finite lattices of dimension 2.

In 1982 Felsner, et al. [19] raised the following problems.

(1) What is the complexity of deciding whether a bipartite graph of maximum
degree 3 admits a BTCon representation?

(2) What is the complexity of deciding whether a planar bipartite graph admits
a BTCon representation?

(3) What is the complexity of deciding whether an incidence orders of planar
graphs (a subdivision of a planar graph) admits a PUTCon representation?

In 1983 Spinrad and Valdes [21] raised the following problems.

(1) Investigating the use of the modular representation developed in the paper
for describing and analyzing other classes of graphs beyond two-dimensional
partial orders.
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(2) Exploring whether the two-dimensional representation of a graph can be
updated efficiently (in linear time) when a new vertex and its edges are
added.

(3) Finding a linear-time algorithm for recognizing two-dimensional partial or-
ders and testing isomorphism, as the current algorithm runs in quadratic
time.

(4) Applying the ideas developed in the paper to solve the problems of recog-
nizing permutation graphs and transitively orientable graphs.

(5) Finding a more efficient O(n+e) algorithm for recognizing two-dimensional
partial orders and testing isomorphism.

(6) Extending the algorithm to solve the related problems of recognizing per-
mutation graphs and transitively orientable graphs.

(7) Developing an algorithm to efficiently update the two-dimensional repre-
sentation of a graph when adding a new vertex and its incident edges.

In 1991 Erdos, et al. [24] raised the following problems.

(1) For p satisfying log2pn = 0(logn), find improved bounds for the expected
value E(dim(P )) of the dimension of P . As of now, we know c2pn log pn <
E(dim(P )) < c1pn log

2pn.
(2) Can random methods be used to find a (possibly quite rare) ordered set P

with dim(P ) close to ∆(P )log2∆(P )?
(3) Alternately, can the Furedi/Kahn inequality dim(P ) < c∆(P )log2∆(P ) be

improved by lowering the exponent on the log∆(P ) term?
(4) Is the inequality f(n, k) > n1−1/k best possible?
(5) As p increases, when does P first satisfy dim(P ) ≥ k, for k = 3,4,5, . . .?
(6) Is the expected value of dim(P ) unimodal as p increases?

(7) When does lim
n→∞

E(dim(P ))

pn log pn
exist, and what is its value?

(8) How does dim(P ) behave when p is very close to 1?

(9) Evaluate lim
n→∞

dim(P )

n
when p = 1/log n.

(10) How tight is the inequality sdim(P ) ≤ dim(P )? We suspect that this
inequality is very tight for almost all P ∈ Ω(n, p).

(11) How does dim(P ) behave if we consider a bipartite model with n minimal
elements and m maximal elements with m > n?

(12) How do the results change when the comparabilities in P are the union of
k random edge disjoint matchings? This approach may prove particularly
useful when k is very small.

In 1992 Brightwell and Scheinerman [25] raised the following problems.

(1) Is there a polynomial time algorithm to evaluate fdim(P )?
(2) For a rational p/q, what is the asymptotic number of n-element ordered

sets with fractional dimension at most p/q?
(3) Is there a sequence (Ik) of interval orders with fdim(Ik)→ 4 as k tends to

infinity?
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In 1994 Felsner and Trotter Jr. [26] raised the following problems.

(1) Are the following two inequalities of Theorem 8.2 best possible? Let P =
(X,P ) be a poset, let A be an antichain with X − A nonempty, and let
Q = (Y, P (Y ). Then let w = width(Q).
(1) If w = 2, then fdim(P ) < 1/2 + 2w.
(2) If w = 3, then fdim(P ) < 1/4 + 2w.

(2) Characterizing the relationship between fractional dimension and width of
a poset, as proposed in Conjecture;
(a) For each ε > 0, there is an integer wε so that for every w > wε, there

exists a poset P so that w − ε < fdim(P ) < w = width(P ).
(b) For every positive integer w ≥ 2, there is an εw > 0 so that fdim(P ) ≤

w − εw, for every poset P with fdim(P ) < w = width(P ).
(3) For each t ≥ 3, let f(t) be the minimum number of incomparable pairs in

a poset P with fdim(P ) ≥ t. Is it true that f(t) = t2?
(4) Given rational numbers p and q, what is the minimum value of the frac-

tional dimension of P ×Q, where fdim(P ) = p and fdim(Q) = q?
(5) Does there exist an absolute constant ε > 0 so that any poset with 3 or

more points always contains a pair whose removal decreases the fractional
dimension by at most 2− ε?

(6) Tightening the upper bound on fractional dimension given in Theorem; If
P = (X,P ) is a poset, then fdim(P ) ≤ 1 + ∆D(P ), as there are posets
where the actual fractional dimension is slightly higher.

In 2015 Felsner, et al. [31] raised the following problems

(1) Is it true that for every n ≥ 3, there exists an integer tn so that if P is
a poset with a planar cover graph and dim(P ) > tn, then P contains the
standard example Sn as a subposet?

(2) Determine for each n ≥ 3, the least integer mn for which there exists a
poset P with mn points for which dim(P ) ≥ n and P has a planar cover
graph. Of course m3 = 6 and m4 = 8, and m5 ≥ 12. Again, this question
can be asked for posets with planar order diagrams.

(3) Whether there exists a polynomial time algorithm that will determine
whether a poset P is a subposet of a poset with a planar cover graph,
and again the same question for planar order diagrams.

In 2018 Kim, et al. [33] raised the following problems

(1) Let n+ 1 be a power of 2 and let Hn = H(n, n; fn) be the difference graph
such that fn(i) = n+ 1− i. What is the exact value of lbc(Hn)?

(2) Is it true that ldim(2n) = n for all n ≥ 1?

In 2018 Scott and Wood [34] raised the following problems

(1) What is the maximum boxicity of graphs with maximum degree 4?
(2) What is the maximum boxicity of k-degenerate graphs with maximum de-

gree ∆?
(3) What is the maximum boxicity of graphs with treewidth k?
(4) What is the maximum boxicity of graphs with no Kt minor?
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In 2020 Barrera-Cruz, et al. [35] raised the following problems

(1) For a positive integer w, what is the maximum value of the Boolean dimen-
sion of a poset whose width is w?

(2) For a positive integer w, what is the maximum value of the local dimension
of a poset whose width is w?

(3) For a non-negative integer n, what is the maximum value of the Boolean
dimension of a poset consisting of an antichain and n additional points?

(4) Is there a constant d0 such that every planar poset has Boolean dimension
at most d0?

(5) Is there a constant d0 such that every poset with a planar cover graph has
Boolean dimension at most d0?

(6) If a planar poset has large dimension, must it contain a large standard
example?

(7) If a planar poset has large Boolean dimension, must it contain a large
standard example?

(8) If a planar poset has large local dimension, must it contain a large standard
example?

(9) For an integer d ≥ 4, what is the maximum local dimension of a discon-
nected poset in which each component has local dimension at most d? Note.
The answer is either d, d+ 1 or d+ 2.

(10) What is the maximum amount the Boolean dimension of a poset can drop
when a single point is removed? Note. The answer is either 1, 2 or 3.

(11) What is the Boolean dimension and the local dimension of 2d?

REFERENCES

[1] Edward Szpilrajn, “ Sur l’extension de l’ordre partiel,” Fundamenta Mathematicae, vol.16

(1930), pp. 386-389.

[2] Ben Dushnik and E. W. Miller “Partially Ordered Sets” American Journal of Mathematics,
Vol. 63, No. 3 (1941), pp. 600-610.

[3] Horace Komm “On the Dimension of Partially Ordered Sets” American Journal of Mathe-
matics, Vol. 70, No. 3 (1948), pp. 507-520.

[4] R. P. Dilworth “A Decomposition Theorem for Partially Ordered Sets” Annals of Mathemat-

ics, Second Series, Vol. 51, No. 1 (1950), pp. 161-166.
[5] Toshio Hiraguchi“ On the Dimension of partially Ordered Sets” The Science Reports of the

Kanazawa University, Vol. 1, No. 2 (1951), pp. 77-94.

[6] Toshio Hiraguchi “On the Dimension of Orders” The Science Report of the Kanazawa Uni-
versity, Vol. IV, No. I, (1955), pp. l-20.

[7] Baker, Flshburn and Roberts “Partial Orders of Dimension 2, Interval Orders, and Interval

Graphs.” RAND Corporation, P-4376 (1970).
[8] Kenneth P. Bogart“Maximal Dimensional Partially Ordered Sets I. HIRAGUCHIS THEO-

REM” Discrete Mathematics vol. 5 (1973), pp. 21-31.
[9] Kenneth P. Bogart and Willim T. Trotter, Jr.“Maximal Dimensional Partially Ordered Sets

II. Characterization of 2n-Element Posets with dimension n.”Discrete Mathematics vol. 5
(1973), pp. 33-43.

[10] Willim T. Trotter, Jr.“Dimension of the crown Skn” Discrete Mathematics, vol. 8 (1974), pp.

85-103.

[11] David Kelly and Ivan Rival “Crowns, Fences, and Dismantlable Lattices” Can. J. Math., Vol.
XXVI, No. 5, (1974), pp. 1257-1271.

"A SURVEY OF DIMENSION OF POSETS"

4771



[12] William T. Trotter, Jr.“Inequalities in Dimension Theory for Posets” Proceedings of the

American Mathematical Society, Vol. 47, No. 2 (1975), pp. 311-316.

[13] David Kelly and Ivan Rival“Planar Lattices” Can. J. Math., Vol. XXVII, No. 3, (1975), pp.
636-665.

[14] Willim T. Trotter, Jr. “ Combinatorial Problems in Dimension Theory for Partially Ordered
Sets ”Discrete Mathematics vol. 16 (1976), pp. 361-381.

[15] Willim T. Trotter, Jr., and John I. Moore, JR.“The Dimension of Planar Posets” Journal Of

Combinatorial Theory, vol. (B) 22 (1977), pp. 54-67.
[16] I. Rabinovitch “The Dimension of Semiorders” Journal Of Combinatorial Theory, Series A25

(1978), pp. 50-61.

[17] L. Babai and D. Duffus “Dimension and automorphism groups ot lattices” Algebra Univer-
salis, vol. 12 (1981), pp. 279-289.

[18] M. K. Bennett “The face lattice of an n-dimensional cube” Algebra Universalis, vol. 14 (1982),

pp. 82-86.
[19] Stefan Felsner, Irina Mustata and Martin Pergel “The Complexity of the Partial Order Di-

mension Problem Closing the Gap” SIAM Journal on Algebraic and Discrete Methods, vol.

3(3) (1982), pp. 351-358.
[20] David Kelly and Willim T. Trotter, Jr.“Dimension Theory for Ordered Sets” Ordered Sets,

ASIC,vol. 83 (1981), pp. 171-211.
[21] Jeremy Spinrad and Jacobo Valdes “Recognition and Isomorphism of Two Dimensional Par-

tial Orders” Lecture Notes in Computer Science, vol. 154 (1983), pp. 676-686.

[22] L. Hopkins“ Some problems involving combinatorial structures determined by intersections
of intervals and arcs.” Ph.D. thesis, University of South Carolina (1981)

[23] Walter Schnyder “Planar Graphs and Poset Dimension” Khmer Academy Pubhshers, Order,

vol. 5 (1989), pp. 323-343.
[24] P. Erdos, H. A. Kierstead and W. T. Trotter “The Dimension of Random Ordered Sets”

Random Structures and Algorithms, vol. 2(3) (1991), pp. 253-275.

[25] G. R. Brightwell and E. R. Scheinerman“ Fractional Dimension of Partial Orders” Order,
vol. 9 (1992), pp. 139-158.

[26] Stefan Felsner and Willim T. Trotter “On the fractional dimension of partially ordered sets”

Discrete Mathematics, vol. 136 (1994), pp. 101-117.
[27] Bayoumi, EL-Zahar And Khamis “On recognizing the dimension of a poset” Journal of the

Egyptian Mathematical Society, Vol. 6(1)(1998), pp. 1-8.

[28] Serkan Hosten, and Walter D. Morris Jr.“The order dimension of the complete graph” Dis-
crete Mathematics, vol. 201 (1999), pp. 133-139.

[29] Michael Baym, Douglas B.West “Bounds on the k-dimension of Products of Special Posets”
Order, vol. 30 (2013) pp. 779-796.

[30] Bartomiej Bosek, Kamil Kloch, Tomasz Krawczyk, Piotr Micek“On-Line Dimension of Semi-

Orders” Order, vol. 30 (2013) pp. 593-615.
[31] Stefan Felsner, William T. Trotter, and Vett Wiechert “The dimension of posets with planar

cover graphs”. Graphs Combin. vol 31(4) (2015), pp. 927-939.

[32] Gwenael Joret, Piotr Micek, William T. Trotter, Ruidong Wang, Veit Wiechert“On the
Dimension of Posets with Cover Graphs of Treewidth 2” Order vol. 34 (2017) pp. 185-234.

[33] Jinha Kim, Ryan R. Martin, Tomas Masarik, Warren Shull, Heather C. Smith, Andrew

Uzzell, and Zhiyu Wang “On Difference Graphs and the local Dimension of Posets” European
Journal of Combinatorics vol. 86 (2018) pp. 103074.

[34] Alex Scott and David R. Wood “Better Bounds for Poset Dimension and Boxicity” Transac-

tions of the American Mathematical Society vol. 373(3) (2019) pp. 2157-2172.
[35] Fidel Barrera-Cruz, Thomas Prag, Heather C. Smith, Libby Taylor, William T. Trot-

ter“Comparing Dushnik-Miller Dimension, Boolean Dimension and Local Dimension” Order,
vol. 37 (2020), pp. 243-269.

[36] Ashok Bhavale “Dimension of dismantlable lattices” Journal of combinatrial theory, series
A, (2024) (communicated).

"A SURVEY OF DIMENSION OF POSETS"

4772


	1. INTRODUCTION
	2. PRELIMINARIES
	3. Literature survey
	4. OPEN PROBLEMS
	REFERENCES



