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Integer programming is not new subject in optimization. However, given its practical 

applicability, we face computational difficulties in solving the large-scale problems. In this 

paper we solve a class of mixed-integer nonlinear programming problem by adopting a strategy 

of releasing non-basic variables from their bounds found in the optimal continuous solution in 

such a way to force the appropriate non-integer basic variables to move to their neighborhood 

integer points. 
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I. INTRODUCTION 

Discussion and solution of the problem of mixed integer non-

linear programming (MINLP) is still important to be 

discussed until now. That is because MINLP problems can be 

used as a tool for solving problems in various sectors. Some 

innovative applications can be seen as in the area of the 

synthesis process [1,2,3,4]. In the field of chemical processes 

[5], industrial area [6,7], network transmission [8, 9,10], 

engineering sector [11,12,13,14].  Application in research 

operations in the education sector  [15,16,17]. 

MINLP refers to mathematical programming with continuous 

and discrete variables and nonlinearities in the objective 

function and constraints. This problem is defined by the 

following model.  

                                                                                     (1)                                                                                         

Subject to  

ℎ(𝑥) ≤ 0                                                                    (2) 

 𝑔(𝑥) + 𝑏𝑦 ≤ 0                                                         (3) 

   𝑥 ∈ 𝑋 ⊂ ℝ+
𝑛 , 𝑦 ∈ 𝑅 ⊂ ℝ+

𝑛                                     (4) 

where 𝑓: ℝ𝑛 → ℝ and ℎ: ℝ𝑛 → ℝ𝑝, 𝑔: ℝ𝑛 → ℝ𝑞  are 

continuous and generally well-behaved functions defined on 

the n-dimensional compact polyhedral convex set 𝑋 =

{𝑥: 𝑥 ∈ ℝ𝑛, 𝐴1𝑥 ≤ 𝑎1};
 
𝑈 = {𝑦: 𝑦 ∈ 𝑌, integer 𝐴2𝑦 ≤ 𝑎2} is 

a discrete set, where for most applications Y is the unit 

hypercube 𝑌𝜀{0, 1}𝑚.𝐵, 𝐴1, 𝐴2, and 𝑐, 𝑎1, 𝑎2 are respectively 

matrices and vectors of comfortable dimensions; the vectors 

are column vectors unless specified otherwise.  

From the worst-case complexity point of view, finding a 

feasible MINLP solution is as hard as finding a feasible 

Nonlinear Programming solution, which is NP-hard [18]. In 

this paper we address a strategy of releasing non basic 

variables from their bounds, combined with the “active 

constrained” method and the notion of super basic for 

efficiently tackling a particular class of MINLP problems.  

 

II. LITERATURE REVIEW 

MINLP problem solving includes innovative approaches and 

related to techniques developed in mixed integer 

programming (MIP), and implementation of mixed integer 

linear programming (MILP) and nonlinear programming 

(NLP) algorithms. Several methods have been carried out by 

linearization objective functions and nonlinear constraints to 

find MILP masters who can estimate and represent the 

original MINLP problem solving, namely Outer 

Approximation (OA) [19,20,21]. Generalized Bender’s 

Decomposition (GBD) [22]. Cutting Plane [23]. Branch-And-

Bound (B&B) [24,25].  

Heuristic approaches to solving MINLPs include Variable 

Neighbourhood Search [26]. Generally in an integer program, 

a decrease in vector gradient is used normally to find a 

condition that cannot be obtained optimally, even convex 

problems. So it is necessary to specify a certain condition for 

the local testing test procedure so that a suboptimal solution 

is obtained that is worth the best integer. Scarf [27] proposed 

a quantity test to determine the optimal value in integer 

program problems. The test is done by searching through 

neighbours worthy points that are proposed to see whether a 

. ( , )Min Z f x y
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nearby point is also feasible, and the results provide an 

improvement in the objective function. 

Suppose [𝜷]𝒌that an integer point is included in a limited 

set of neighbourhoods 𝑵([𝜷]𝒌).. Defined a neighbourhood 

system that is related to[𝜷]𝒌. The integer point fulfils two 

requirements, viz 

                                                                   

  

 

Based on the two neighbourhood requirements above, the 

strategy of the integration process can be carried out as 

follows; 

(1) Suppose a non-integer component (𝒙𝒌)of the optimal 

vector (𝒙𝑩),and the points that are adjacent to(𝒙𝒌) is 

[𝒙𝒌] 𝒅𝒂𝒏 [𝒙𝒌] + 𝟏. If one of the points satisfies the 

constraint and gives an optimal minimum decrease in the 

value of the objective function, it will move to the other 

components, if no feasible integer solution is obtained.  

(2) Suppose [𝒙𝒌] the integer point of a feasible solution that 

meets the above requirements. if [𝒙𝒌] + 𝟏 ∈ 𝑵([𝒙𝒌]), than 

[𝒙𝒌] + 𝟏 is one point that is not feasible for the objective 

function obtained to satisfy[𝒙𝒌]. In this case, [𝒙𝒌] is called 

the optimal integer feasible solution. 

 

III. METHODOLOGY 

The MINLP problem solving method is carried out using a 

neighborhood approach to find integer solutions and 

combined with active constraints 

A. Derivation of The Method 

The components (𝑥𝐵)𝑖≠𝑘, of vector 𝑥𝐵 will also be affected 

as the numerical value of the scalar (𝑥𝑁)𝑗∗ increases to ∆𝑗∗. 

Consequently, if some element of vector 𝑗∗, i.e., 𝑗∗  for 𝑖 ≠

𝑘, are positive, then the corresponding element of 𝑥𝐵 will 

decrease, and eventually may pass through zero. However, 

any component of vector x must not go below zero due to the 

non-negativity restriction. Therefore, a formula, called the 

minimum ratio test is needed in order to see what is the 

maximum movement of the non-basic (𝑥𝑁)𝑗∗ such that all 

components of x remain feasible. This ratio test would 

include two cases. 

1. A basic variable (𝑥𝐵)𝑖≠𝑘 decreases to zero (lower 

bound) first. 

2. The basic variable, (𝑥𝐵)𝑘 increases to an integer. 

Specifically, corresponding to each of these two cases 

above, one would compute 

                𝜃1 = min
𝑖≠𝑘|𝑗∗>0

{
𝛽𝑖

𝑗∗
}                                     (5) 

                  𝜃2 = ∆𝑗∗                                                      (6) 

How far one can release the non-basic (𝑥𝑁)𝑗∗ from its bound 

of zero, such that vector 𝑥 remains feasible, will depend on 

the ratio test ∗
 given below 

                ∗ = min(𝜃1, 𝜃2)                                        (7) 

Obviously, if ∗ = 𝜃1, one of the basic-variable (𝑥𝐵)𝑖≠𝑘 

will hit the lower bound before (𝑥𝐵)𝑘 becomes integer. If 

∗ = 𝜃2, the numerical value of the basic variable (𝑥𝐵)𝑘 

will be integer and feasibility is still maintained. 

Analogously, we would be able to reduce the numerical value 

of the basic variable (𝑥𝐵)𝑘 to its closest integer [𝛽𝑘]. In this 

case the amount of movement of a particular non-basic 

variable, (𝑥𝑁)𝑗∗ corresponding to any positive element of 

vector 𝑗′ , is given by 

              ∆𝑓′=
𝑓𝑘

𝑘𝑗
                                                        (8) 

In order to maintain the feasibility, the ratio test * is still 

needed. Consider the movement of a particular non basic 

variable, ∆, as expressed in Eq (15-8). 

The only factor that one needs to calculate is the 

corresponding element of vector . A vector 𝑗  can be 

expressed as 

                𝑗 = 𝐵−1𝑎𝑗, 𝑗 = 1 … , 𝑛 − 𝑚                    (9) 

Therefore, in order to get a particular element of vector 𝑗  we 

should be able to distinguish the corresponding column of 

matrix [𝐵]−1. Suppose we need the value of element 𝑘𝑗∗ , 

letting 𝑣𝑘
𝑇 be the 𝑘-th column vector of [𝐵]−1, we then have 

                   𝑣𝑘
𝑇 = 𝑒𝑘

𝑇𝐵−1                                             (10) 

Subsequently, the numerical value of kj* can be obtained 

from 

                   𝑘𝑗∗ = 𝑣𝑘
𝑇𝑎𝑗∗                                             (11) 

The vector of reduced costs 𝑑𝑗 is used to measure the 

deterioration of the objective function value caused by 

releasing a non-basic variable from its bound. Consequently, 

in deciding which non-basic should be released in the integer 

process, the vector 𝑑𝑗 must be taken into account, such that 

deterioration is minimized. Recall that the minimum 

continuous solution provides a lower bound to any integer-

feasible solution. Nevertheless, the amount of movement of 

particular non-basic variable as given in Eqns. (8) or (9), 

depends in some way on the corresponding element of vector 

𝑗 . Therefore, it can be observed that the deterioration of the 

objective function value due to releasing a non-basic variable 

(𝑥𝑁)𝑗∗ so as to integer a basic variable (𝑥𝐵)𝑘 may be 

measured by the ration 

                |
𝑑𝑘

𝑘𝑗∗
|                                                              (12) 

where |𝑎| means the absolute value of scalar a. 

In order to minimize the detonation of the optimal continuous 

solution we then use the following strategy for deciding 

which non-basic variable may be increased from its bound of 

zero, that is,  

    min
𝑗

{|
𝑑𝑘

𝑘𝑗∗
|} , 𝑗 = 1, … , 𝑛 − 𝑚                     (13) 

1. [ ] ([ ] ) [ ] [ ] ,j k k iIf N than j k     

2. ([ ] ) [ ] ( )k kN N O  
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From the active constraint strategy [29] and the partitioning 

of the constraints corresponding to basic(𝐵), super-basic (𝑆) 

and non-basic (𝑁) variables we can write 

              [
𝐵 𝑆 𝑁
0 0 𝐼

] [

𝑥𝐵

𝑥𝑠

𝑥𝑁

] = [
𝑏

𝑏𝑁
]                             (14)       

    Or  

              𝐵𝑥𝐵 + 𝑆𝑥𝑆 + 𝑁𝑥𝑁 = 𝑏                               (15) 

              𝑥𝑁 = 𝑏𝑁                                                        (16) 

The basis matrix 𝐵 is assumed to be square and nonsingular, 

we get 

            𝑥𝐵 = 𝐵−1𝑏 − (𝐵−1𝑆 )𝑥𝑆 − (𝐵−1𝑁)𝑥𝑁      (17) 

Expression (16) indicates that the non-basic variables are 

being held equal to their bound. It is evident through the 

“nearly” basic expression of Eqn. (17), the integer search 

strategy discussed in the previous section, designed for MILP 

problem can be implemented. Particularly, we would be able 

to release a non-basic variable from its bound, Eq (16) and 

exchange it with a corresponding basic variable in the process 

of searching for integers, although the solution would be 

degenerate. 

B. Integer Solution  

MINLP problem solving including innovative approaches 

and implementations for mixed integer linear programming 

(MILP) algorithms. So, before we proceed to the case of 

MINLP problems, it is worthwhile to discuss the basic 

strategy of process for linear case [28]. 

Consider a MILP problem with the following form 

Minimize z = 𝑐𝑇𝑥                                                       (18) 

Subject to 𝐴𝑥 ≤ 𝑏                                                      (19) 

  𝑥 ≥ 0                                                             (20) 

 𝑥𝑗 integer for some 𝑗 ∈ 𝐽  

A component of the optimal basic feasible vector (𝑥𝐵)𝑘, to 

MILP solved as continuous can be written as  (𝑥𝐵)𝑘 = 𝛽𝑘 −

𝛼𝑘1(𝑥𝑁)1 − ⋯ − 𝛼𝑘𝑗(𝑥𝑁)𝑗 − ⋯ − 𝛼𝑘𝑛 − 𝑚(𝑥𝑁)𝑁𝑛 − 𝑚    

(21) 

 If (𝑥𝐵)𝑘 is an integer variable and assume that 𝛽𝑘 is not an 

integer, the partitioning of 𝛽𝑘 into the integer and fractional 

components is that given 

            𝛽𝑘 = [𝛽𝑘] + 𝑓𝑘 , 0 ≤ 𝑓𝑘 ≤ 1                          (22)  

suppose to increase (𝑥𝐵)𝑘 to its nearest integer, ([] + 1). 

Based on the idea of suboptimal solutions may elevate a 

particular non-basic variable, say (𝑥𝑁)𝑗∗, above its bound of 

zero, provided 𝑘𝑗∗ , as one of element of the vector 𝑗∗ , is 

negative. Let 𝑗∗  be amount of movement of the non-variable 

(𝑥𝑁)𝑗∗, such that the numerical value of scalar (𝑥𝐵)𝑘 is 

integer. Referring to Eqn. (21), 𝑗∗  can then be expressed as   

              𝑓∗ =
1−𝑓𝑘

−𝛼𝑘𝑗∗
                                                    (23) 

while the remaining non basic stay at zero. It can be seen that 

after substituting (22) into (23) for (𝑥𝑁)𝑗∗ and taking into 

account the partitioning of 𝛽𝑘 given in (22), we obtain 

          (𝑥𝐵)𝑘 = [] + 1                                               (24)                                                                          

Thus, (𝑥𝐵)𝑘 is now an integer solution 

C. The Algorithm 

After solving the relaxed problem, the procedure for 

searching a suboptimal but integer-feasible solution from an 

optimal continuous solution can be described as follows. 

Let 𝑥 = [𝑥] + 𝑓,    0 ≤ 𝑓 ≤ 1 be the continuous solution 

of the relaxed problem, [𝑥] is the integer component of non-

integer variable 𝑥 and  𝑓  is the fractional component. 

Stage 1. 

Step 1. Get row 𝑖∗ the smallest integer infeasibility, such 

that  𝛿𝑖∗ = min{𝑓𝑖, 1 − 𝑓𝑖}, 

Step 2. Calculate 𝑣𝑖∗
𝑇 = 𝑒𝑖∗

𝑇 𝐵−1,  

Step 3. Calculate 𝜎𝑖𝑗 = 𝑣𝑖∗
𝑇 𝑎𝑗, 

Step 4. Calculate 𝛼𝑗∗ = 𝐵−1𝛼𝑗∗, i.e. solve 𝐵𝛼𝑗∗ = 𝛼𝑗∗  for 

𝛼𝑗∗, 

Step 5. Do Ratio test, 

Step 6. Exchanging basis, 

Step 7. Stop if there are no other non-integer basic variable. 

Otherwise repeat from step 1. 

Stage 2. Do integer line search to improve the integer feasible 

solution. 

 

IV. CONCLUSIONS 

In this paper we solve a class of mixed-integer nonlinear 

programming problem by adopting a strategy of releasing 

non-basic variables from their bounds found in the optimal 

continuous solution in such a way to force the appropriate 

non-integer basic variables to move to their neighborhood 

integer points. A study of the search strategy for integer 

solutions has been made. The number of steps to look for an 

integer solution will be limited if the number of integer 

variables contained in the problem is also limited. Thus, the 

computational time for the process of finding an integer 

solution does not always depend on the number of integer 

variables, maybe many integer variables have integer values 

in the continuous optimal solution 
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