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In this article, we discuss the effect of earth’s oblateness and magnetic force on the motion and 

stability of the system for elliptic orbit of the centre of mass. We have got a set of non-linear, 

non-homogenous and non-autonomous equations. Generally, a system moving in space has to 

face some perturbative forces. These forces compel the system to change its orbit from circular 

to elliptic orbit. On account of this we have studied in details the problem in elliptic orbit of the 

centre of mass. This is simply the generalization of the particular case of the Keplerian orbit i.e. 

circular orbit. So, we analysed the effect of the earth’s oblateness and magnetic force on the 

existence and behavior of different equilibrium position of the system. Also, discuss the 

Jacobian Integral of the averaged equations of motion of the system, Two equilibrium solutions 

of the problem and after Hooke’s modulus of elasticity. 

KEYWORDS: Hooke’s modulus of elasticity, Non-Linear and Non-Homogenous, Equilibrium position of the system, Jacobian 

integral. 

 

1.1  INTRODUCTION 

We have searched in this article that the effect of 

earth’s oblateness and magnetic force on the motion and 

stability of the system for elliptic orbit of the centre of mass. 

This is simply the generalization of deals with the particular 

case of the Keplerian orbit i.e, circular orbit. 

Generally, a system moving in space has to face 

some Perturbative forces. These forces compel the system to 

change its orbit from circular to elliptic one. On account of 

this we have studied in details the problem in elliptic orbit of 

the centre of mass. 

We have considered the two-dimensional case. 

Periodic terms have been averaged with respect to the true 

anomaly of the path. We have found there are two equilibrium 

positions (a1, 0) and (0, b1). But the first equilibrium position 

(a1, 0) alone is stable. It has been shown that the presence of 

earth’s oblateness and magnetic force does not affect the 

stability of the first equilibrium position. Only this 

equilibrium position gives the significant value of 𝜆, the 

Hooke’s modulus of elasticity. This equilibrium position is 

stable in the Liapunov’s sense. 

 

1.2)  JACOBIAN INTEGRAL OF THE EQUATION OF MOTION OF THE SYSTEM IN THE ELLIPTIC ORBIT OF 

THE CENTRE OF MASS 

 we have obtained the system of equations can be written as  

𝑥′′ − 2𝑦′ − 3𝜌𝑥 −
4𝛽

𝜌
𝑥 = −𝜆̅

𝛼 [𝜌4 −
𝜌3𝐼0

𝑟
] 𝑥 + (

𝐴

𝜌
𝑐𝑜𝑠𝑖)  

𝑦′′ + 2𝑥′ +
𝛽

𝜌
𝑦 = −𝜆̅

𝛼 [𝜌4 −
𝜌3𝐼0

𝑟
] 𝑦      … [1.2.1] 

Where  𝜆̅
𝛼 = 𝜆𝛼

𝜌3

𝜇
   𝛽 = 3𝑘2/𝜌2 

   𝐴 = {
𝑚2

𝑚1+𝑚2
} (

𝑄1

𝑚1
−

𝑄2

𝑚2
) (

𝜇𝐸

√𝜇𝑝
)    𝑟2 = 𝑥2 + 𝑦2  

 In the case of elliptic orbit of the centre of mass. The dashes denote differentiation w.r. t. the true anomaly v of the orbit. 

 The condition for constraint will be given by  
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𝑥2 + 𝑦2 ≤
𝐼0

2

𝜌2         … [1.2.2] 

Now, we obtain the averaged values of the following terms 

1

2𝜋
∫

1

𝜌

2𝜋

0

𝑑𝑣 = 𝐼 

1

2𝜋
∫ 𝜌

2𝜋

0

𝑑𝑣 =
1

(1 − 𝑒2)
1

2⁄
 

1

2𝜋
∫ 𝜌2

2𝜋

0

𝑑𝑣 =
1

(1 − 𝑒2)
3

2⁄
 

1

2𝜋
∫ 𝜌3

2𝜋

0

𝑑𝑣 =
(2 + 𝑒2)

2(1 − 𝑒2)
5

2⁄
 

And   

1

2𝜋
∫ 𝜌42𝜋

0
𝑑𝑣 =

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
       … [1.2.3] 

Putting these values in the system of equations (1.2.1), we have 

𝑥′′ − 2𝑦′ − 3𝑥 {
1

(1 − 𝑒2)
1

2⁄
} − 4𝛽𝑥 = −𝜆̅

𝛼 [{
(2 + 3𝑒2)

2(1 − 𝑒2)
7

2⁄
} − (

𝐼0

2𝑟
) {

(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
}] 𝑥 + 𝐴𝑐𝑜𝑠 𝑖 

𝑦′′ + 2𝑥′ + 𝛽𝑦 = −𝜆̅
𝛼 [{

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} − (

𝐼0

2𝑟
) {

(2+𝑒2)

(1−𝑒2)
5

2⁄
}] 𝑦    …  [1.2.4] 

 

The condition of the constraints [1.2.2] reduces to 

𝑥2 + 𝑦2 ≤ 𝐼0
2(1 − 𝑒2)

3
2⁄        …  [1.2.5] 

Thus, the system of equation [1.2.4] will represent the motion of the system with the condition of constraints [1.2.5] 

Now, we have discussed three types of motion 

i) Free motion, when  𝜆̅
𝛼 = 0 

ii) Constrained motion, when 𝜆̅
𝛼 ≠ 0 

iii) Evolutional motion (combination of free and constrained motion) 

We have that even in the particular case of circular orbit of the centre of mass free motion is bound to be converted into a 

constrained motion with the lapse of time. The free motion is easily integrated in terms of simple functions. Hence, we assume that 

the system is describing constrained motion. Here, equality sign will hold in the condition [1.2.5]. therefore, the satellite 𝑚1 will 

move on the sphere. 

𝑥2 + 𝑦2 = 𝐼0
2(1 − 𝑒2)

3
2⁄           ...  [1.2.6] 

We see that true anomaly is not present in the system of equations [1.2.4] explicitly. Therefore, there exists Jacobi’s integral 

for the system of equations [1.2.4]. 

We multiply two equations of [1.2.4] by 2𝑥′ and 2𝑦′ respectively and then adding and integrating, we have, 

𝑥′ 2 + 𝑦′ 2 − {
3𝑥2

(1−𝑒2)
1

2⁄
} − 4𝛽𝑥2 + 𝛽𝑦2 + 𝜆̅

𝛼 [{(
(2+3𝑒2)

2(1−𝑒2)
3

2⁄
)} (𝑥2 + 𝑦2)] −                           𝜆̅

𝛼𝐼0 [{
(2+𝑒2)

(1−𝑒2)
5

2⁄
} (𝑥2 + 𝑦2)

1

2] −

2𝐴𝑐𝑜𝑠 𝑖 = ℎ𝑒      … [1.2.7] 

Where ℎ𝑒  is the constant of integration. Equation [1.2.7] is the Jacobi’s Integral and ℎ𝑒 is called Jacobian constant. 

For, obtaining the equations of the surface of zero velocity, we put 

𝑥′ 2 + 𝑦′ 2 = 0  in  [1.2.7] 

∴ Surface of zero velocity is given by – 

{
3𝑥2

(1−𝑒2)
1

2⁄
} + 4𝛽𝑥2 − 𝛽𝑦2 − 𝜆̅

𝛼 [{(
(2+3𝑒2)

2(1−𝑒2)
3

2⁄
)} (𝑥2 + 𝑦2)] +                      𝜆̅

𝛼𝐼0 [{
(2+𝑒2)

(1−𝑒2)
5

2⁄
} (𝑥2 + 𝑦2)

1

2] +

2𝐴𝑐𝑜𝑠 𝑖 + ℎ𝑒 = 0     …  [1.2.8] 

From this it follows that the satellite 𝑚1 will be moving within the boundary of the curve of zero velocity represented by 

[1.2.8] for different values of the Jacobian constant ℎ𝑒 . 
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1.3) EQUILIBRIUM SOLUTION OF THE PROBLEM 

We have deduced the system of equations [1.2.4] of motion of the system in rotating frame of reference for the case of 

elliptic orbit of the centre of mass. We have assumed that the system is moving under the effective constraint. 

The general solutions of the system of equations [1.2.4] is beyond our reach and hence we shall obtain some particular 

solution called “Equilibrium Position” for the system. Let the co-ordinates of the equilibrium position be 

𝑥 = 𝑥1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,        𝑦 = 𝑦1 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 …  [1.3.1] 

∴ 𝑥′ = 𝑥′′ = 0,     𝑦′ = 𝑦′′ = 0  …  [1.3.2] 

Hence, at the equilibrium position new co-ordinates [1.3.1] and their derivatives [1.3.2] will satisfy [1.2.4] 

∴ Equations [1.2.4] will take the from 

− {
3𝑥1

(1−𝑒2)
1

2⁄
} − 4𝛽𝑥1 = −𝜆̅

𝛼 [ {
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} −

𝐼0

2𝑟1
{

(2+𝑒2)

(1−𝑒2)
5

2⁄
}] 𝑥1 + 𝐴𝑐𝑜𝑠𝑖    

𝛽𝑦1 = −𝜆̅
𝛼 [ {

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} − 

𝐼0

2𝑟1
{

(2+𝑒2)

(1−𝑒2)
5

2⁄
}] 𝑦1      …  [1.3.3] 

Where, 𝑟1 = √𝑥2 + 𝑦2       … [1.3.4] 

Now, we shall discuss two particular solutions to the system of equations [1.3.3] 

i) The system may be wholly extended along x-axis. In this case, y = 0. Let the first equilibrium position be (𝑎1, 0). 

ii) The system may be wholly extended along y-axis. In this case, x =0. Let this equilibrium position be (0, 𝑏1). 

Now, we shall calculate the values of constant 𝑎1 𝑎𝑛𝑑 𝑏1 in the problem. 

i) FIRST EQUILIBRIUM POSITION (𝒂𝟏, 𝟎): 

− {
3𝑥1

(1−𝑒2)
1

2⁄
} − 4𝛽𝑥1 = −𝜆̅

𝛼 [ {
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} −

𝐼0

2𝑥1
{

(2+𝑒2)

(1−𝑒2)
5

2⁄
}] 𝑥1 + 𝐴𝑐𝑜𝑠 𝑖 

𝑜𝑟, − {
3𝑥1

(1−𝑒2)
1

2⁄
} − 4𝛽𝑥1 + 𝜆̅

𝛼{
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
}𝑥1 = 𝜆̅

𝛼𝐼0{
(2+𝑒2)

2(1−𝑒2)
5

2⁄
} 𝑥1 + 𝐴𝑐𝑜𝑠 𝑖 

𝑜𝑟, 𝑥1[{
−3

(1−𝑒2)
1

2⁄
} − 4𝛽 + 𝜆̅

𝛼{ 
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
}] =

𝜆𝛼𝐼0(2+𝑒2)+2𝐴𝑐𝑜𝑠 𝑖 (1−𝑒2)
5

2⁄

2(1−𝑒2)
5

2⁄
 

𝑜𝑟, 𝑥1[ 
−6(1−𝑒2)

3
−8𝛽(1−𝑒2)

7
2⁄

+𝜆𝛼(2+3𝑒2)

2(1−𝑒2)
7

2⁄
] =

𝜆𝛼𝐼0(2+𝑒2)+𝐴𝑐𝑜𝑠 𝑖 2(1−𝑒2)
5

2⁄

2(1−𝑒2)
5

2⁄
 

𝑜𝑟, 𝑥1 =
𝜆̅

𝛼𝐼0(1 − 𝑒2)(2 + 𝑒2) + 2 𝐴𝑐𝑜𝑠 𝑖 (1 − 𝑒2)
7

2⁄

𝜆̅
𝛼(2 + 3𝑒2) − 2(1 − 𝑒2)3{3 + 4𝛽(1 − 𝑒2)

1
2⁄ }

 

The first equilibrium position is 

[
𝜆𝛼𝐼0(1−𝑒2)(2+𝑒2)+2 𝐴𝑐𝑜𝑠 𝑖 (1−𝑒2)

7
2⁄

𝜆𝛼(2+3𝑒2)−2(1−𝑒2)3{3+4𝛽(1−𝑒2)
1

2⁄ }
 , 0]      … [1.3.5] 

ii) SECOND EQUILIBRIUM POSITION (0, 𝒃𝟏) 

We have, from the second equation of [1.2.4] 

 𝛽 = −�̅�𝛼 [{
(2+3𝑒2)

2(1−𝑒2)
7
2

} −
𝐼0

2𝑦1
{

(2+𝑒2)

(1−𝑒2)
5
2

}] 

 𝑦1 =
𝜆𝛼𝐼0(1−𝑒2)(2+𝑒2)

𝜆𝛼(2+3𝑒2)+2𝛽 (1−𝑒2)
7

2⁄  
 

Second equilibrium position is 

[0 ,
𝜆𝛼𝐼0(1−𝑒2)(2+𝑒2)

𝜆𝛼(2+3𝑒2)+2𝛽 (1−𝑒2)
7

2⁄  
 ]        … [1.3.6] 

Thus, we have obtained the co-ordinates of the points of the two equilibrium positions of the system as given in [1.3.5] and 

[1.3.6]. 

1.4)  THE VALUE OF THE MODULUS OF ELASTICITY𝝀: 
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Let us assume that the extended length of the cable connecting the two satellites is 𝐼𝐸  at any equilibrium position and 𝑟0 

the length of the normalized extended cable between the centre of mass of the system and the satellite 𝑚1. Hence, actual extended 

length of the cable between 𝑚1 and the centre C of the mass will be 
𝑟0 𝑣

𝐼0
 , where 𝑣 =

𝐼0𝑚2

𝑀
 

Now, taking the moments of different masses about the satellite 𝑚1 in amy equilibrium position, 

𝑚2𝐼𝐸 = (𝑚1 + 𝑚2) (
𝑟0𝑣

𝐼0

) 

Putting the value of v, we get 

𝑟0 = 𝐼𝐸              ...  [1.4.1] 

Therefore, we shall consider the two equilibrium positions of the system separately for obtaining the value of Hooke’s 

modulus of elasticity 𝜆. 

i) First Equilibrium Position (𝒂𝟏, 𝟎): 

In this case, 

𝑟0 = 𝑎1 =
𝜆𝛼𝐼0(1−𝑒2)(2+𝑒2)+2 𝐴𝑐𝑜𝑠 𝑖 (1−𝑒2)

7
2⁄

𝜆𝛼(2+3𝑒2)−2(1−𝑒2)3{3+4𝛽(1−𝑒2)
1

2⁄ }
      … [1.4.2] 

Comparing [4.4.1] and [4.4.2] , we have 

𝐼𝐸1
=

𝜆𝛼𝐼0(1−𝑒2)(2+𝑒2)+2 𝐴𝑐𝑜𝑠 𝑖 (1−𝑒2)
7

2⁄

𝜆𝛼(2+3𝑒2)−2(1−𝑒2)3{3+4𝛽(1−𝑒2)
1

2⁄ }
       … [1.4.3] 

Where 𝐼𝐸1
 is the stretched length of the cable in the first equilibrium position. 

Simplifying the relation [1.4.3] and putting the value of 𝜆̅
𝛼 = (

𝜌3𝜆

𝜇𝐼0
) {

(𝑚1+𝑚2)

𝑚1.𝑚2
}, we get 

𝜆 =
2𝜇𝐼0.𝑚1.𝑚2

𝜌3(𝑚1+𝑚2)
  

𝐼𝐸1(1−𝑒2)
3

{3+4𝛽(1−𝑒2)
1

2⁄
}+2 𝐴𝑐𝑜𝑠 𝑖 (1−𝑒2)

7
2⁄

2(𝐼𝐸1−𝐼0)+(3𝐼𝐸1−𝐼0)𝑒2+𝐼0 𝑒4 =  +𝑣𝑒  … [1.4.4] 

The relation [1.4.4] gives a meaningful value of 𝜆 in this case. 

ii) Second Equilibrium Position (0, 𝒃𝟏) 

In this case, 

𝑟0 = 𝑏1 =
𝐼0𝜆𝛼(1−𝑒2)(2+𝑒2)

𝜆𝛼(2+3𝑒2)+2𝛽(1−𝑒2)
7

2⁄
      … [1.4.5] 

𝐼𝐸2
= 𝑟0 = 𝑏1 =

𝐼0𝜆𝛼(1−𝑒2)(2+𝑒2)

𝜆𝛼(2+3𝑒2)+2𝛽(1−𝑒2)
7

2⁄
     …  [1.4.6] 

Where 𝐼𝐸2
 being the extended length of the cable in the second equilibrium position. 

Again, simplifying the relation [1.4.6] and putting the value of 𝜆̅
𝛼 = (

𝜌3𝐼

𝜇𝐼0
) {

(𝑚1+𝑚2)

𝑚1.𝑚2
},  

We get 

𝜆 = − (
2𝜇𝛽𝐼0𝐼𝐸2

𝜌3
) {

𝑚1. 𝑚2

(𝑚1 + 𝑚2)
} {

(1 − 𝑒2)
7

2⁄

2(𝐼𝐸2
− 𝐼0) + 3(𝐼𝐸3

+ 𝐼0)𝑒2 + 𝐼0𝑒4
} = −𝑣𝑒 

Hence, in the second equilibrium position 𝜆 is (–) ve. But Hooke’s modulus of elasticity can not be (–) ve. 

We conclude that second equilibrium position is untenable. 

In this way, we conclude that only the first position of equilibrium provides meaningful value of 𝜆 and rest position give 

meaningless value of 𝜆. 

Therefore, we shall establish the stability for the system in the first equilibrium position (𝑎1, 0) only. 

 

1.5)  STABILITY OF THE SYSTEM 

We shall study the stability of the first equilibrium position of the system in the Liapunov’s sense. The first equilibrium 

position is given by 

𝑥 = 𝑎1,        𝑦 = 0 

Let us suppose that there are small variations in the co-ordinates at the given equilibrium position. 

Let 𝜎1, 𝜎2  be small variations in x, y co-ordinates respectively for a given position of equilibrium. 

𝑥 = 𝑎1 + 𝜎1 ,       y = 𝜎2 

𝑥′ = 𝜎1
′ ,       𝑦′ = 𝜎2

′ 

𝑥′′ = 𝜎1
′′ ,       𝑦′′ = 𝜎2

′′          …  [1.5.1] 

Substituting these values in the set of equations [1.2.4], we have a system of variational equations. 
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𝜎1
′′ − 2𝜎2

′ − {
3(𝑎1 + 𝜎1)

(1 − 𝑒2)
1

2⁄
} − 4𝛽(𝑎1 + 𝜎2) = −𝜆̅

𝛼 [{
(2 + 3𝑒2)

2(1 − 𝑒2)
7

2⁄
} − {(

𝐼0

2𝑟2

)
(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
}] (𝑎1 + 𝜎1) + 𝐴 cos 𝑖 

And 

 

𝜎2
′′ + 2𝜎1

′ + 𝛽𝜎2 = −𝜆̅
𝛼 [{

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} − {(

𝐼0

2𝑟2
)

(2+𝑒2)

(1−𝑒2)
5

2⁄
}] 𝜎2   …  [1.5.2] 

Where 𝑟2
2 = (𝑎1 + 𝜎2)2 + 𝜎2

2      … [1.5.3] 

We have already obtained the existence of Jacobi’s integral in the original set of equations, the variational equations [1.5.2] 

must have the same. 

We can easily obtain the Jacobi’s Integral for the system of equations [1.5.2]. for this, multiplying the equations [1.5.2] by 

(𝑎1 𝜎2)′, 2𝜎2
′ respectively and adding them together, we shall get after integration. 

𝜎1
′2

+ 𝜎2
′2

− [{
3

(1−𝑒2)
1

2⁄
} + 4𝛽](𝑎1 + 𝜎2)2 + 𝛽𝜎2

2 + 𝜆̅
𝛼 {

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} {(𝑎1 + 𝜎2)2 + 𝜎2

2} − 𝜆̅
𝛼𝐼0 {

(2+𝑒2)

(1−𝑒2)
5

2⁄
} {(𝑎1 + 𝜎1)2 +

𝜎2
2}

1

2 + 2𝐴(𝑎1 + 𝜎2)𝑐𝑜𝑠𝑖 = ℎ2    … [1.5.4] 

Where ℎ2 is the constant of integration. In this way, we have obtained the equation [1.5.4] as Jacobi’s Integral for the 

system of variation equation. 

Expanding the terms, the equation [1.5.4] can be written as, 

𝑉𝑒(𝜎1
′,  𝜎2

′, 𝜎1, 𝜎2) = 𝜎1
′2

+ 𝜎2
′2

+  𝜎1
2 [− {

3

(1−𝑒2)
1

2⁄
} − 4𝛽 + 𝜆̅

𝛼 {
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
}] +  𝜎2

2 [𝛽 + 𝜆̅
𝛼 {

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} − (

𝜆𝛼𝐼0

2𝑎1
) {

(2+𝑒2)

(1−𝑒2)
5

2⁄
}] +

𝜎1 [{
𝜆𝛼𝑎1(1+3𝑒2)

(1−𝑒2)
7

2⁄
} − {

6𝑎1

(1−𝑒2)
1

2⁄
} − 8𝛽𝑎1 − (𝜆̅

𝛼𝐼0) {
(2+𝑒2)

(1−𝑒2)
5

2⁄
} − 2𝐴 𝑐𝑜𝑠𝑖] + [−4𝛽 𝑎1

2 − {
3 𝑎1

2

(1−𝑒2)
1

2⁄
} +

(𝜆̅
𝛼) {

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
}  𝑎1

2 − (𝜆̅
𝛼𝐼0) {

(2+𝑒2)  𝑎1

(1−𝑒2)
5

2⁄
} − 2  𝑎1𝐴𝑐𝑜𝑠𝑖] + 0(3) =   ℎ2  … [1.5.5] 

 

Where 0(3) denotes the third and higher order terms in the small quantities 𝜎1 𝑎𝑛𝑑 𝜎2 . 

Similar to the circular orbit, we shall obtain the sufficient conditions for the stability with the help of Liapunov’s theorem 

on stability. The Jacobian Integral 𝑉𝑒 is the integral of the system for variational equations [1.5.2], its differential equation taken 

along the trajectory of the system must vanish identically. 

Hence, the only condition that the unilateral position be stable in the Liapunov’s senses the 𝑉𝑒  must be positive definite. 

For making the function a ositive definite function it is necessary that the function [1.5.5] does not have the term of the first order 

in the variables shown in its argument and the terms of the second order must satisfy the Sylvestor’s condition for positive 

definiteness of the quadratic form. The third and higher order terms will have no effect on the sign of the function 𝑉𝑒. 

Hence, we conclude that the sufficient conditions for stability of the system at the said equilibrium position in the 

Liapunov’s sense are 

i) (�̅�𝛼𝑎1) {
(2+3𝑒2)

(1−𝑒2)
7

2⁄
} − {

6𝑎1

(1−𝑒2)
1

2⁄
} − 8𝛽𝑎1 − (𝜆̅

𝛼𝐼0) {
(2+𝑒2)

(1−𝑒2)
5

2⁄
} − 2𝐴𝑐𝑜𝑠𝑖 = 0 

ii)  |
𝐵1 0
0 𝐵2

| = +𝑣𝑒 𝑖. 𝑒;  𝐵1𝐵2 = +𝑣𝑒 

iii)  𝐵2 = +𝑣𝑒          … [1.5.6] 

 

Where  𝐵1 = {
−3

(1−𝑒2)
1

2⁄
} − 4𝛽 + (𝜆̅

𝛼) {
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} 

𝐵2 = 𝛽 + (𝜆̅
𝛼) {

(2 + 3𝑒2)

2(1 − 𝑒2)
7

2⁄
} − (

𝜆̅
𝛼𝐼0

2𝑎1

) {
(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
} 

Comparing conditions (ii) & (iii) of [1.5.6]. we shall have the sufficient conditions for stability of the system in the form 

i) (𝜆̅
𝛼𝑎1) {

(2+3𝑒2)

(1−𝑒2)
7

2⁄
} − {

6𝑎1

(1−𝑒2)
1

2⁄
} − 8𝛽𝑎1 − (𝜆̅

𝛼𝐼0) {
(2+𝑒2)

(1−𝑒2)
5

2⁄
} − 2𝐴𝑐𝑜𝑠𝑖 = 0 

ii) − {
3

(1−𝑒2)
1

2⁄
} − 4𝛽 + (𝜆̅

𝛼) {
(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} > 0 

iii) 𝛽 + (𝜆̅
𝛼) {

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} − (

𝜆𝛼𝐼0

2𝑎1
) {

(2+𝑒2)

(1−𝑒2)
5

2⁄
}  > 0       …  [1.5.7] 

 

 

Let us now analyse the several condition of [1.5.7] for stability of the system at the given equilibrium position separately. 
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Condition (i) 

𝐿𝐻𝑆 =  𝑎1 [(𝜆̅
𝛼) {

(2+3𝑒2)

(1−𝑒2)
7

2⁄
} − {

6

(1−𝑒2)
1

2⁄
} − 8𝛽] − (𝜆̅

𝛼𝐼0) {
(2+𝑒2)

(1−𝑒2)
5

2⁄
} + 2𝐴𝑐𝑜𝑠𝑖  

= 𝑎1 [{
𝜆𝛼(2+3𝑒2)−6(1−𝑒2)

3
−8𝛽(1−𝑒2)

7
2⁄

(1−𝑒2)
7

2⁄
}] − (𝜆̅

𝛼𝐼0) {
(2+𝑒2)

(1−𝑒2)
5

2⁄
} + 2𝐴𝑐𝑜𝑠𝑖 

= [{
𝜆̅

𝛼𝐼0(1 − 𝑒2)(2 + 𝑒2) + 2𝐴𝑐𝑜𝑠𝑖(1 − 𝑒2)
7

2⁄

(1 − 𝑒2)
7

2⁄
}] − (𝜆̅

𝛼𝐼0) {
(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
} + 2𝐴𝑐𝑜𝑠𝑖 

= [{
𝜆̅

𝛼𝐼0(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
}] + 2𝐴𝑐𝑜𝑠𝑖 − (𝜆̅

𝛼𝐼0) {
(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
} + 2𝐴𝑐𝑜𝑠𝑖 = 0 

The first condition is satisfied identically. 

Condition (ii) 

𝐿𝐻𝑆 =  (𝜆̅
𝛼) {

(2+3𝑒2)

2(1−𝑒2)
7

2⁄
} − 4𝛽 − {

3

(1−𝑒2)
1

2⁄
}  

=  {
1

2(1 − 𝑒2)
7

2⁄
} [𝜆̅

𝛼(2 + 3𝑒2) − 8𝛽(1 − 𝑒2)
7

2⁄ − 6(1 − 𝑒2)3] 

=  {
1

2(1 − 𝑒2)
7

2⁄
} [

𝐼0𝜆̅
𝛼(1 − 𝑒2)(2 + 𝑒2) + 2𝐴𝑐𝑜𝑠𝑖(1 − 𝑒2)

𝑎1

] 

[  𝑎1 =
𝐼0𝜆̅

𝛼(1 − 𝑒2)(2 + 𝑒2) + 2𝐴𝑐𝑜𝑠𝑖(1 − 𝑒2)

{𝜆̅
𝛼(2 + 3𝑒2) − 2(1 − 𝑒2)3} {3 + 4𝛽(1 − 𝑒2)

1
2⁄ }

=  +𝑣𝑒 

The second condition is also satisfied identically. 

Condition (iii) 

𝐿𝐻𝑆 =  𝛽 + (𝜆̅
𝛼) {

(2 + 3𝑒2)

2(1 − 𝑒2)
7

2⁄
} − (

𝜆̅
𝛼𝐼0

2𝑎1

) {
(2 + 𝑒2)

(1 − 𝑒2)
5

2⁄
} 

= 𝛽 + (
𝜆̅

𝛼

2𝑎1(1 − 𝑒2)
7

2⁄
) [{𝑎1(2 + 3𝑒2)} − 𝐼0(2 + 𝑒2)(1 − 𝑒2)]  

          = 𝛽 + (
𝜆̅

𝛼

2𝑎1(1 − 𝑒2)
7

2⁄
) [(2 + 3𝑒2) {

𝐼0𝜆̅
𝛼(1 − 𝑒2)(2 + 𝑒2) + 2𝐴𝑐𝑜𝑠𝑖(1 − 𝑒2)

7
2

𝜆̅
𝛼(2 + 3𝑒2) − 2(1 − 𝑒2)3 {3 + 4𝛽(1 − 𝑒2)

1
2⁄ }

} − 𝐼0(1 − 𝑒2)(2 + 𝑒2)] 

 

= 𝛽 + (
𝜆̅

𝛼

2𝑎1(1 − 𝑒2)
7

2⁄
) [{

𝐼0𝜆̅
𝛼(2 + 3𝑒2)(1 − 𝑒2)(2 + 𝑒2) + 2𝐴𝑐𝑜𝑠𝑖(2 + 3𝑒2)(1 − 𝑒2)

7
2

𝜆̅
𝛼(2 + 3𝑒2) − 2(1 − 𝑒2)3 {3 + 4𝛽(1 − 𝑒2)

1
2⁄ }

−
𝐼0𝜆̅

𝛼(2 + 3𝑒2)(1 − 𝑒2)(2 + 𝑒2) + 2𝐼0(2 + 𝑒2)(1 − 𝑒2)4{3 + 4𝛽(1 − 𝑒2)
1

2⁄ }

𝜆̅
𝛼(2 + 3𝑒2) − 2(1 − 𝑒2)3 {3 + 4𝛽(1 − 𝑒2)

1
2⁄ }

}] 

= 𝛽 + (
𝜆̅

𝛼

2𝑎1(1 − 𝑒2)
7

2⁄
) [{

6𝐼0(2 + 𝑒2)(1 − 𝑒2)4 + 8𝐼0𝛽(2 + 𝑒2)(1 − 𝑒2)
9

2⁄ + 2𝐴𝑐𝑜𝑠𝑖(2 + 3𝑒2)(1 − 𝑒2)
7
2}

𝜆̅
𝛼(2 + 3𝑒2) − 2(1 − 𝑒2)3 {3 + 4𝛽(1 − 𝑒2)

1
2⁄ }

}] 

= 𝛽 + (
𝜆̅

𝛼

2𝑎1(1 − 𝑒2)
7

2⁄
) [{

6𝐼0(2 + 𝑒2)(1 − 𝑒2)4 + 8𝐼0𝛽(2 + 𝑒2)(1 − 𝑒2)
9

2⁄ + 2𝐴𝑐𝑜𝑠𝑖(2 + 3𝑒2)(1 − 𝑒2)
7
2}

𝐼0𝜆̅
𝛼(2 + 𝑒2)(1 − 𝑒2) + 2𝐴𝑐𝑜𝑠𝑖(1 − 𝑒2)7/2

}] 

 

= (+) ve 

 

The third condition is also satisfied. 

Thus, we see that the three conditions of [1.5.7] for 

stability are satisfied identically. 

Therefore, we conclude that the equilibrium is stable 

at (𝑎1, 0) in the Liapunov’s sense, where 𝛽, 𝜆𝛼 and Acosi 

have usual meanings. 

 

If we compare the condition for the stability of 

circular orbit with, in the present case of elliptic orbit, we 

observe that both the conditions are similar. If we put e = 0 in 

[1.5.7], we shall obtain the same result as in stability of the 

system of circular orbit. 
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1.6) CONCLUSION 

The equilibrium solution of the problem and their 

stability in case of the elliptic orbit of the centre of mass of 

the system, on the basis of the analysis of the free motion of 

the system it has been proved that all the motions of the 

system are bound to be converted into constrained one and 

hence the Jacobian Integral of the averaged equations of 

motion of the system has been obtained. Two equilibrium 

solutions of the problem have been obtained and after 

obtaining Hooke’s modulus of elasticity it has been shown 

that only one equilibrium solution is stable in the Liapunov’s 

sense. Moreover, it has been concluded that only this 

equilibrium position is stable in the Liapunov’s sense.  
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