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This study introduces an advanced hybrid model integrating High-Order Hesitant Fuzzy Time 

Series (HOHFTS) with a Multilayer Perceptron (MLP) to improve the accuracy of air pollutant 

concentration forecasting. The model utilizes Hesitant Fuzzy Sets to define fuzzy sets, mean 

aggregated membership values to handle hesitant fuzzy elements, and MLP neural networks to 

capture complex relationships. A distinguishing feature is the determination of the optimal fuzzy 

time series (FTS) order, set to 24 in this study, to effectively capture daily temporal 

dependencies in the hourly air pollutant data. A case study using Semarang City’s air pollution 

dataset demonstrates the model's effectiveness, with preprocessing addressing missing values 

and interval-based discretization. Performance evaluation with Mean Absolute Error (MAE) 

and Symmetric Mean Absolute Percentage Error (SMAPE) indicates outstanding accuracy, with 

SMAPE values below 10% for most pollutants. Further exploration of hyperparameter 

optimization and order determination is recommended to enhance generalization and 

computational efficiency. 

KEYWORDS: Fuzzy Time Series, Multilayer Perceptron, Hesitant Fuzzy Set, High-Order Hesitant Fuzzy Time Series, Air 

Pollution Forecasting, Accuracy Metric 

I. INTRODUCTION 

Fuzzy concept introduced by Lotfi Zadeh in 1965 is a 

mathematical framework for dealing with uncertainty, 

vagueness and imprecision which are often present in real-

world. Unlike classical set theory where an element belongs 

to a set or doesn’t, fuzzy set allow for partial membership 

where an element belong to a set to a certain degree that can 

be represented by a membership value between 0 and 1. Fuzzy 

concept also developed to forecast and known as Fuzzy Time 

Series introduced by Song and Chissom is a forecasting 

technique that applies fuzzy principles by modelling time 

series data as a sequence of fuzzy sets [1], [2]. In 2002, Chen 

introduced high-order fuzzy time series concept which 

involves two or more sequential data in time series to model 

Fuzzy Logic Relation (FLR) [3]. To define the fuzzy set, many 

techniques has been developed by researchers. One of the 

concept in defining fuzzy set is the concept of Hesitant Fuzzy 

Set (HFS) that allows each element of data point has multiple 

membership value [4]. Beside in defining the fuzzy set, fuzzy 

time series concept can be developed in the defuzzification not 

only using certain defuzzification technique but also another 

algorithms including machine learning and deep learning 

algorithms. In previous research, Pattanayak  [5], [6] use 

Support Vector Machine to models the FLR to get the 

forecasted value without using any defuzzification techniques, 

where this approach is one of interesting as the machine 

learning algorithm are used to models and resulting the 

forecasting result. Inspired by this, instead of using a machine 

learning algorithm, a deep learning algorithm could be used to 

models and forecast based on the constructed FLR. One of 

deep learning algorithms is Multilayer Perceptron (MLP) that 

is a feedforward neural network that consist of one input and 

output layer and one or more hidden layer and capable to solve 

non-linear problems approximating continuous function [7]. 

MLP categorized as supervised learning that learn input-

output patterns and approximate non-linear function mapping 

from input space into output space [8]. Motivated by this, in 

this research the fuzzy time series concept will be developed 
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by using hesitant fuzzy set to define its set along with high-

order fuzzy time series concept to record more data points and 

the MLP will be used to models and forecast the forecasting 

result. 

Substances or energy introduced into the environment that 

cause harmful effects of negatively impact the value of 

resources called as pollutants[9]. Air pollution encompassed 

various gases, particles and toxins present in the air and 

organism at high concentration that could lead into health risks 

and also respiratory problems [10]. Particulate matter (𝑃𝑀10 

and 𝑃𝑀2.5), carbon monoxide (𝐶𝑂), nitrogen dioxide (𝑁𝑂2), 

sulfur dioxide (𝑆𝑂2), ozone (𝑂3) and hydrocarbon (HC) are 

common air pollutant especially in Indonesia. This kind of 

pollution come from many source which primarily from 

industries, vehicle emissions and natural sources and could 

risk human respiratory [11]Major pollutants impacting human 

health include nitrogen oxides, sulfur compounds and 

suspended particulate matter [12] Air pollution remains a 

critical global issue due to its significant impact on human 

health. According to World Health Organization (WHO), 

approximately 4.2 million premature deaths annually are 

linked to air pollution, with estimates suggesting this number 

may rise to 6.7 million deaths per year [13], [14] Monitoring 

air pollution in urban areas is essential, requiring the 

measurement of pollutant concentrations and comparison 

against global air quality standards. Forecasting the Air 

Quality Index (AQI) and air pollutant concentrations supports 

decision-making processes for mitigation and preventive 

measures. Time series data of air pollutant concentrations and 

AQI, often recorded on an hourly or daily basis can help 

predict pollution levels, identify trends and recognize patterns. 

Thus, in its turn enables the development of effective 

environmental policies and strategies. 

Numerous studies related with air pollution and quality 

prediction have been conducted. Saini et al. [15] utilized the 

Long Short- Term Memory (LSTM) model to predict air 

pollution parameters in Amravati, India using data from 2008 

to 2018. Marinov et al. [16] employed the Auto-Regressive 

Integrated Moving Average (ARIMA) model to forecast 

pollutants such as ozone and nitrogen dioxide at varying time 

intervals in Sofia, Bulgaria. Hasnain et al. [17] applied the 

Prophet Forecasting Method (PFM) to predict air pollution 

levels across multiple monitoring stations in Jiangsu, China. 

Reikard [18] investigated the effects of volcanic emissions 

from Kilauea in Hawaii on air quality and public health, using 

ARIMA and regression models to forecast pollutant 

concentrations. 

Motivated by those past research, this research aims to 

develop a prediction model by integrating High-Order 

Hesitant Fuzzy Time Series (HOHFTS) with Multilayer 

Perceptron (MLP). The proposed model will be applied to a 

pollutant concentration dataset from Semarang City, and its 

performance will be evaluated using Mean Absolute Error 

(MAE) and Symmetric Mean Absolute Percentage Error 

(SMAPE) to measure the model's accuracy. 

 

II. PROPOSED MODEL 

In traditional Fuzzy Time Series (FTS) analysis, forecasting 

typically involves seven key steps: defining the Universe of 

Discourse (UOD), partitioning the UOD into intervals, 

defining fuzzy sets, fuzzifying the time series data, 

establishing Fuzzy Logical Relationships (FLRs), 

constructing Fuzzy Logical Relationship Groups (FLRGs), 

and defuzzifying the results to produce the forecasted value. 

However, this research proposes a novel hybrid model that 

combines three advanced approaches to overcome the 

limitations of traditional FTS techniques. 

First, Length-Based Discretization (LBD) is employed to 

dynamically determine the Number of Intervals (NOI) and 

construct two Universes of Discourse (UODs). Next, High-

Order Hesitant Fuzzy Time Series (HOHFTS) is utilized to 

model complex relationships between sequential data points 

by leveraging hesitant fuzzy sets for a more nuanced 

definition of fuzzy sets and FLRs. Finally, a Multilayer 

Perceptron (MLP) is integrated to refine the forecasting 

process, replacing the need for conventional defuzzification 

techniques by learning directly from the data, thereby there is 

no certain defuzzification technique and the proposed model 

called High Order Hesitant Fuzzy Time Series- Multilayer 

Perceptron (HOHFTS-MLP) and hereby its model 

architecture 

 
Figure 1 Model architecture of HOHFTS-MLP 
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Figure 2 Algorihtm of LBD approach 

 

 
Figure 3 Algorihtm of HOHFTS approach 

 

In high order fuzzy time series, the FLR can be constructed 

from two or more data point in the past [19]. For example, if 

𝐹(𝑡) is caused by the sequence of 𝐹(𝑡 − 1), 𝐹(𝑡 − 2), 𝐹(𝑡 −

3), … , 𝐹(𝑡 − 𝑚), then the FLR can be constructed as 

𝐹(𝑡 − 𝑚), … , 𝐹(𝑡 − 3), 𝐹(𝑡 − 2), 𝐹(𝑡 − 1) → 𝐹(𝑡), and can 

be called as the mth order of Fuzzy Time Series model. The 

hesitant fuzzy set, is a generalization of a fuzzy set that allows 

the membership degree of an element to be represented as a 

set of possible values, rather than a single value [20]. A 

Hesitant Fuzzy Set (HFS) H on a universe of discourse X dan 

be defined as 𝐻 = {〈𝑢, ℎ𝐻(𝑢)〉|∀𝑢 ∈ 𝑈}, where ℎ𝐻(𝑢) is a set 

of possible membership degrees of u in H and called as 

Hesitant Fuzzy Element (HFE). To obtain the representative 

of HFE that may various, an aggregation operator will be used 

to simplify using this formula [21] 

ℎ = 1 − ∏ (1 − 𝑢𝑖)
𝑤𝑖

𝑣

𝑖=1
 

where 𝑣 represents the number of subsets formed for each 

observation of membership degree in range [0,1] of each 

interval in the fuzzy set and for each 𝑢𝑖, the weight 

represented as 𝑤𝑖  ∀𝑖|𝑖 = 1,2,3, … , 𝑣 such that ∑ 𝑤𝑖 = 1𝑣
𝑖=1 . 

 
Figure 4 Basic structure of MLP [22] 

 

MLP that basically consist of 3 layers, in this research the 

input layer is the past data based on the number of the 

obtained order and its FLR. Generally, if the order of FLR is 

mth then the obtained FLR is 𝐹(𝑡 − 𝑚), … , 𝐹(𝑡 − 3), 𝐹(𝑡 −

2), 𝐹(𝑡 − 1) → 𝐹(𝑡) the input layer would be all of the m 

number of past data points. The number of hidden layer and 

its number of neurons is flexible, even adding more layer 

could bring better accuracy but they don’t always lead into it, 

for complex data the hidden layers often require at least two 

or three hidden layers or can be more with regularization to 

avoid model to overfit [23], [24], [25]. To prevent resulting 

overfiting model, L2 regularization will be used add weight 

penalties without eliminating weights entirely [26], [27].  

Accuracy metrics, Mean Absolute Error (MAE) and 

Symmetric Mean Absolute Percentage Error (SMAPE), are 

used to evaluate the performance of the proposed model. 

Lower values of MAE and SMAPE indicate better 

forecasting accuracy. MAE can be expressed as follows [28] 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑖 − 𝑦̂𝑖|

𝑛

𝑖=1

 

SMAPE can avoid problem of large errors when the actual 

value is very close to zero and large difference between the 

absolute error of actual and predicted value and can be 

expressed mathematically as follows [29] 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑖 − 𝑦̂𝑖|

(𝑦𝑖 + 𝑦̂𝑖)/2
. 100%

𝑛

𝑖=1

 

III. RESULT AND DISCUSSION 

The air pollutant concentration dataset includes 𝑃𝑀2.5, 𝑃𝑀10, 

𝑆𝑂2, 𝐶𝑂, 𝑂3, 𝑁𝑂2 and 𝐻𝐶 recorded at 30 minutes intervals 

from January 1st, 2023 to September 4th,2024 resulting 29,424 

data points with the number of missing value are shown in 

Table 1. To handle missing values in dataset, four-step 

process applied: 

1. Missing value will be filled based on the average of 

the same hour in the same week,  

2. For remaining missing values will be filled using the 

average from same hour in previous and next week, 
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3. Any further missing values will be filled using the 

average from the same hour in same month, and 

4. Finally, use the average for the same hour in the 

previous and next month for any remaining gaps. 

 

Table 1 Number of missing values from each air pollutant 

Air Pollutant Number of Missing Value 

𝐏𝐌𝟏𝟎 9899 

𝐏𝐌𝟐.𝟓 17055 

𝐒𝐎𝟐 4831 

𝐂𝐎 5883 

𝐎𝟑 10569 

𝐍𝐎𝟐 6399 

𝐇𝐂 14725 

 

Before applying the HOHFTS-MLP model, the dataset was 

aggregated into hourly intervals by averaging every two 

consecutive 30-minute records for the same hour. This 

process reduced the original 29,424 data points to 14,712 

hourly data points. 

 

Table 2 Descriptive statistic from each air pollutant 

Air Pollutant Mean Range Standard 

Deviation 

𝐏𝐌𝟏𝟎 30.137 186.5 17.215 

𝐏𝐌𝟐.𝟓 8.138 93 8.49 

𝐒𝐎𝟐 36.281 145 13.315 

𝐂𝐎 1392.185 5292 718.552 

𝐎𝟑 34.575 226 42.463 

𝐍𝐎𝟐 31.394 164.5 25.884 

𝐇𝐂 32.132 98.5 21.69 

 

Following the preprocessing phase to prepare the dataset, the 

Length-Based Discretization (LBD) method was applied to 

each air pollution concentration dataset. This process 

determined the Number of Intervals (NOI) along with two 

universes of discourse (UOD), U and U′. The outcomes are 

as follows: 

 

Table 3 NOI and two UODs from each air pollutant 

Air 

Pollutant 

NOI U U’ 

𝐏𝐌𝟏𝟎 6 [0.99, 188.0] [0.99, 220.0] 

𝐏𝐌𝟐.𝟓 4 [0.99, 94.5] [0.99, 120.0] 

𝐒𝐎𝟐 6 [4.49, 151.0] [4.49, 172.5] 

𝐂𝐎 6 [0.99, 5296.46] [0.99, 6136.5] 

𝐎𝟑 11 [8.99, 235.5] [8.99, 256.5] 

𝐍𝐎𝟐 110 [14.49, 179.5] [14.49, 180.5] 

𝐇𝐂 201 [0.99, 100.0] [0.99, 100.0] 

Based on the result of LBD approach, the HOHFTS approach 

can be deployed. Based on the two universe of discourse U 

and U’, the interval partition can be determined by dividing 

the range of the universe of discourse to the number of 

intervals. For example, 𝑃𝑀2.5 has 4 number of interval, 

hereby the length of every interval in universe of discourse U 

and U’ that denoted by b and b’ can be calculated b=
94.5−0.99

4
= 23.3775 and b′ =

120.000−0.990

4
= 29.7525 and 

this result can be used to determine the weight both for u and 

u’ that denoted by w and w’ can be calculated w=
23.3775

23.3775+29.7525
= 0.44001 and 𝑤′ =

29.7525

23.3775+29.7525
=

0.55999 and this calculation of length of interval and weight 

of interval also applied in other air pollutant. After the length 

of interval and its weight for both U and U’ are obtained, each 

data points in air pollutant dataset will be determined its HFE 

value. In this research, each data points will have two HFE as 

it come from universe of discourse U and U’. To determine 

the membership degree of each data points, triangular 

membership function will be used, for example the first data 

point of 𝑃𝑀2.5 is 6.5 𝜇𝑔/𝑚3 located in first interval both for 

U and U’, then the membership degree for 𝑢1 can be 

calculated  𝜇(6.5)(𝑢1) =  
6.5−0.99

12.67875−0.99
= 0.471393 where 

0.99 is the lower bound of the first interval partition and 

12.67875 is the midpoint of the first interval in UOD of U’ 

and with same technique, the membership degree for 𝑢′1 can 

be calculated 𝜇(6.5)(𝑢′1) =  
6.5−0.99

15.86625−0.99
= 0.370389, 

therefore the HFE of 6.5 are 0.473063 and 0.370389. The two 

memberships degree obtained then aggregated using 

aggregation operator, thus the aggregated membership value 

can be calculated as ℎ1(6.5) = 1 − [(1 −

0.471393)0.44001. (1 − 0.370389)0.55999] = 0.417014. 

Since 6.5 was located in the first interval both for U and U’, 

it means that the membership value for other interval partition 

will be 0, thus the aggregated value also 0, which means 

ℎ2(6.5) = ℎ3(6.5) = ℎ4(6.5) = 0 and the mean aggregated 

membership value can be calculated ℎ̅(6.5) =
0.417014+0+0+0

4
= 0.104254. The obtained mean aggregated 

membership value of each data points will be used along with 

its normalized value to construct Fuzzy Logic Relation 

(FLR). For example, if the order of the high-order fuzzy time 

series is 4, then the FLR can be constructed as 

𝑦1, ℎ̅1, 𝑦2, ℎ̅2, 𝑦3,ℎ̅3, 𝑦4ℎ̅4 →  𝑦5 where 𝑦 is the value of each 

datapoints and ℎ̅ is the mean aggregated membership value 

related with each datapoints. This step in HOHFTS algorithm 

also deployed in all air pollution dataset and in each 

datapoints. In this study, a high-order fuzzy time series model 

of order 24 was selected, aligning perfectly with the hourly 

data recording frequency over a 24-hour period, capturing the 

daily patterns.  

To optimize the HOHFTS-MLP model, extensive 

hyperparameter tuning was performed to balance accuracy 

and generalization while avoiding overfitting. Key 

parameters, such as the number of hidden layers, activation 

functions, and solvers, were tailored for each pollutant to 
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reflect its unique characteristics. This meticulous process, 

detailed in Table 4, ensured the model captured underlying 

patterns effectively and maintained high forecasting accuracy 

across diverse pollutants. The result is a robust and adaptable 

model capable of delivering precise air pollutant 

concentration predictions. 

 

Table 4 Hyperparameter from each air pollutant 

Air 

Pollutant 

Hyperparameter 

𝐏𝐌𝟏𝟎 hidden_layer_sizes=(1024,512), 

solver='adam', max_iter=1000, 

activation='relu' 

𝐏𝐌𝟐.𝟓 hidden_layer_sizes=(1024,1024), 

solver='adam', max_iter=1000, 

activation='relu' 

𝐒𝐎𝟐 hidden_layer_sizes=(64,128), solver='adam', 

max_iter=1000, activation='relu' 

𝐂𝐎 hidden_layer_sizes=(1024,1024,1024,1024,

1024), solver='adam', max_iter=1000, 

activation='relu' 

𝐎𝟑 hidden_layer_sizes=(1024,1024), 

solver='adam', max_iter=1000, 

activation='relu' 

𝐍𝐎𝟐 hidden_layer_sizes=(256,128), 

solver='adam', max_iter=1000, 

activation='relu' 

𝐇𝐂 hidden_layer_sizes=(256,512), 

solver='adam', max_iter=1000, 

activation='relu' 

 

 

Figure 5 Comparison of actual and predicted 𝑷𝑴𝟐.𝟓 

value in testing 

 

 
Figure 6 Comparison of actual and predicted 𝑷𝑴𝟏𝟎 

value in testing 

 

 
Figure 7 Comparison of actual and predicted 𝑺𝑶𝟐 value 

in testing 

 
Figure 8 Comparison of actual and predicted 𝑪𝑶 value 

in testing 

 

 
Figure 9 Comparison of actual and predicted 𝑶𝟑 value in 

testing 

 

 
Figure 10 Comparison of actual and predicted 𝑵𝑶𝟐 

value in testing 

 

 

Figure 11 Comparison of actual and predicted 𝑯𝑪 value 

in testing 

 

The proposed method, applied to the air pollutant dataset, 

achieved varying accuracy metrics in testing, as shown in  

Table 5. The dataset was split into 90% for training, 10% for 

validation, and the remaining 10% for testing. The accuracy 

metrics, including Mean Absolute Error (MAE) and 

Symmetric Mean Absolute Percentage Error (SMAPE), 

highlight the model's performance across different air 

pollutants. The validation data was used to fine-tune the 

model’s hyperparameters, ensuring a balance between 

accuracy and generalization while avoiding overfitting during 

the training process. This split allows for a comprehensive 

evaluation of the model's robustness and reliability in 

forecasting air pollutant concentrations. 

 

Table 5 Accuracy metric resulted in testing from each air 

pollutant 

Air Pollutant MAE SMAPE (%) 

𝐏𝐌𝟏𝟎 2.9436 9.00 

𝐏𝐌𝟐.𝟓 0.1197 9.05 
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𝐒𝐎𝟐 1.1324 2.63 

𝐂𝐎 58.345 18.99 

𝐎𝟑 0.8842 4.13 

𝐍𝐎𝟐 2.8211 4.55 

𝐇𝐂 1.3545 4.36 

 

While the proposed HOHFTS-MLP model demonstrates 

strong accuracy for most air pollutants, a deeper sensitivity 

analysis is required, particularly in determining the FTS order 

and fine-tuning the MLP hyperparameters. These factors play 

a pivotal role in the model's ability to capture temporal 

dependencies and non-linear relationships within the data. 

For instance, 𝑆𝑂2 forecasting with an FTS order of 168-

corresponding to weekly periodicity and an MLP architecture 

comprising two hidden layers with 512 and 256 neurons, 

coupled with the Adam solver and ReLU activation function, 

achieves impressive results, an SMAPE of 2.44% and an 

MAE of 1.0482. However, exploring alternative 

configurations, such as varying the FTS order or adjusting the 

MLP’s architecture, could further optimize performance. 

Sensitivity analysis allows for a systematic evaluation of how 

these parameters influence accuracy, helping to identify the 

most effective configurations for different pollutants. This 

process ensures that the model remains robust, adaptable, and 

capable of delivering high-precision forecasts across diverse 

environmental scenarios. By refining these parameters, the 

HOHFTS-MLP model can achieve even greater reliability 

and efficiency in practical applications. 

 

IV. CONCLUSIONS 

The HOHFTS-MLP model developed in this research 

showcases exceptional performance in forecasting air 

pollutant concentrations by seamlessly integrating Hesitant 

Fuzzy Sets (HFS), Multilayer Perceptron (MLP), and an 

optimal determination of the FTS order for high-order fuzzy 

time series. By leveraging the strengths of these 

methodologies, the model effectively captures the inherent 

complexities of air pollutant data, including non-linear 

patterns, temporal dependencies, and uncertainties. 

Setting the FTS order to 24, which corresponds to hourly 

recordings over a 24-hour cycle, proved highly effective in 

capturing daily temporal patterns. This alignment 

significantly enhanced the model's ability to identify trends 

and make accurate predictions. The results underscored the 

model's reliability, with Symmetric Mean Absolute 

Percentage Error (SMAPE) values consistently below 10% 

for most pollutants, demonstrating its superior accuracy and 

adaptability across varying datasets. 

Despite its success, the model's performance can be further 

optimized through refined hyperparameter tuning and 

advanced exploration of FTS order selection. Future research 

should delve deeper into adaptive methods for selecting the 

FTS order, allowing the model to dynamically adjust to 

different data frequencies and pollutant behaviors. 

Additionally, the hyperparameter optimization process could 

benefit from automated approaches, such as Bayesian 

optimization or grid search, to identify optimal configurations 

more efficiently. 

Overall, the HOHFTS-MLP model represents a 

groundbreaking tool for air quality monitoring and 

management. Its innovative design not only enhances 

forecasting accuracy but also supports informed decision-

making and policy development. By addressing critical 

environmental challenges, this model contributes 

significantly to sustainable urban planning, health risk 

mitigation, and the formulation of effective air pollution 

control strategies. 

The HOHFTS-MLP model developed in this research 

demonstrates exceptional capability in forecasting air 

pollutant concentrations by combining Hesitant Fuzzy Sets, 

MLP, and optimal order determination for high-order fuzzy 

time series. Setting the FTS order to 24 aligns with the hourly 

recording frequency and captures daily temporal patterns, 

significantly improving model performance. Results 

highlight superior accuracy, with SMAPE values below 10% 

for most pollutants. While the model is highly effective, 

future work should focus on refining the hyperparameter 

tuning process and further exploring the role of FTS order 

selection to maximize accuracy and efficiency. This 

innovative approach provides a powerful tool for air quality 

management and environmental decision-making, enabling 

better forecasting and policy development. 
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