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Abstract:  

In this paper, we have studied various properties of the F- sturcture manifold satisfying 

2 1 0kF F    where k is positive integer.  Nijenhuis tensor F-structures and kernel have also been 

discussed. 
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1. Introduction: 

        Let Mn be  a differentiable manifold of class C
 and F be a (1,1) tensor of class C

, satisfying 

(1.1) 
2 1 0KF F    

we define the operators l and m on Mn by 

(1.2) 
2 2,k kl F m I F     

From (1.1) and (1.2), we have 

(1.3) 2 2, , , 0l m I l l m m lm ml       

, 0,lF Fl F Fm mF     

where I denotes the identity operator. 

Theorem (1.1): Let the (1,1) tensors p and q be defined by 

(1.4) ,k kp m F q m F     

Then p and q are invertible operators satisfying 

(1.5) 
1 3 1 3 2 2 2, , . 0p q p q p q p q p p q I         
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2 2 2, , ,kq p q I pl ql F pm qm p m q m m            

2 2p l l q l    

Proof: Using (1.2), (1.3) and (1.4), we have 

(1.6) ,pq qp I   Thus 

(1.7) 
1 1,p q q p    

Also, using (1.2), (1.3) and (1.4), we get 

(1.8) 
3 3,p q q p   

From (1.7) and (1.8) we have 
1 3.p q p    Other results follow similarly. 

Theorem (1.2): Let the (1,1) tensors   and   be defined by 

(1.9) , ,k kl F l F      then 

(1.10) 
2 2 3 30, 2 0, 2 0            

Proof: Using (1.2), (1.3) and (1.9), we get 

2 22 , 2k kF F     Thus we get  2 2 0    

The other results follow similarly. 

Theorem (1.3): Define the (1,1) tensors   and   by 

(1.11) 
2 2, ,k km F m F     then 

(1.12) 1    and I   

Proof: Using (1.2), (1.3) and (1.11), we get 

(1.13) 
2,m l I       thus 1    and m l I     

Theorem (1.4): Define the (1.1) tensors   and   by 

(1.14) , ,m F m F      then 

(1.15)  , 1
nn n n nm F m F       
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Proof: Using (1.3) and (1.14), we have 

 2 2 3 3, ..... 1
nn nm F m F m F          

The other results follow similarly 

2. NIJENHUIS TENSOR: 

The Nijenhuis tensors corresponding to the operators F, l, m be defined as 

(2.1)          2, , , , ,N X Y FX FY F X Y F FX Y F X FY     

(2.2)          2, , , , ,
l
N X Y lX lY l X Y l lX Y l X lY     

(2.3)          2, , , , ,
m
N X Y mX mY m X Y m mX Y m X mY     

Theorem (2.1): Let F, l, m satisfy (1.1) and (1.2), then 

(2.4) (i)     2, ,N mX mY F mX mY  

(ii)  , 0mN mX mY   

(iii)    , ,
l
N mX mY l mX mY  

(iv)    , ,
m
N lX lY m lX lY  

(v)  , 0
l
N lX mY   

(vi)  , 0
m
N mX lY   

Proof:  With proper replacements of X and Y in (2.1), (2.2) and (2.3), and using (1.3) we get the 

reuslts. 

 

3. METRIC F-STRUCTURE: 

Let the Riemannian metric g be such that 

(3.1)    , ,F̀ X Y g FX Y  is skew- symmetric. Then 
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(3.2)    , , ,g FX Y g X FY   and 

 ,F g  is called metric F-structrure. 

Theorem (3.1): On the metric structrure-F, satisfying (1.1) we have 

(3.3)        
1

, 1 , ,`
kk kg F X F Y g X Y m X Y


      

where 

(3.4)      , , , .m̀ X Y g mX Y g X mY   

Proof: From (1.2), (1.3) and (3.2), (3.4) 

     2, 1 ,
kk k kg F X F Y g X F Y   

   1 ,
k
g X lY   

    
1

1 , ,
k

g X I m Y


    

     
1

1 , ,`
k

g X Y m X Y


      

4. KERNEL: 

Let F be a (1,1) tensor, we define 

(4.1)    : 0Ker F X FX   

Theorem (4.1): For the (1,1) tensor F satisfying (1.1), we have 

(4.2) 
2 2 1..... kKer F Ker F Ker F     

Proof: Let X Ker F  

0FX   

2 0F X   

2X Ker F   

Thus 
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(4.3) 
2Ker F Ker F  

Now let 
2X Ker F  

(4.4) 
2 0F X   

3 0F X   

(4.5) 
2 1 0KF X      Using (1.1) in (4.5), we have 

(4.6) 0FX  X Ker F   Thus 

(4.7) 
2Ker F Ker F  

From (4.3) and (4.7), we get 

(4.8) 
2Ker F Ker F  

Proceeding similarly, we get (4.2) 
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