On The Structure Equation $F^{2k+1} + F = 0$

Lakhan Singh¹ and Shailendra Kumar Gautam

Department of Mathematics, D.J. College, Baraut, Baghpat (U.P.),India Eshan College of Engineering, Mathura(UP),India

Abstract:

In this paper, we have studied various properties of the *F*- sturcture manifold satisfying

 $F^{2k+1} + F = 0$ where *k* is positive integer. Nijenhuis tensor *F*-structures and kernel have also been

discussed.

Keywords: Differnetiable manifold, projection operators, Nijenhuis tensor, metric and kernel.

1. **Introduction:**

Let M^n be a differentiable manifold of class C^{∞} and F be a (1,1) tensor of class C^{∞} , satisfying

$$
(1.1) \tF^{2K+1} + F = 0
$$

we define the operators *l* and *m* on *Mⁿ* by

(1.2) $l = -F^{2k}$, $m = I + F^{2k}$

From (1.1) and (1.2) , we have

(1.3) From (1.1) and (1.2), we have
 $l + m = I$, $l^2 = l$, $m^2 = m$, $lm = ml = 0$
 $lF = Fl = F$, $Fm = mF = 0$,

$$
lF = Fl = F, \quad Fm = mF = 0,
$$

where *I* denotes the identity operator.

Theorem (1.1): Let the (1,1) tensors p and q be defined by

$$
(1.4) \quad p=m+F^k, \quad q=m-F^k
$$

Then *p* and *q* are invertible operators satisfying

Then *p* and *q* are invertible operators satisfying
(1.5)
$$
p^{-1} = q = p^3
$$
, $q^{-1} = p = q^3$, $p^2 = q^2$. $p^2 - p - q + I = 0$

$$
= q^2 - p - q + I, \, pl = -ql = F^k, \, pm = qm = p^2m = q^2m = m,
$$
\n
$$
p^2l = -l = q^2l
$$
\n**Proof:** Using (1.2), (1.3) and (1.4), we have
\n(1.6) $pq = qp = I$, Thus
\n(1.7) $p^{-1} = q$, $q^{-1} = p$
\nAlso, using (1.2), (1.3) and (1.4), we get
\n(1.8) $p^3 = q$, $q^3 = p$
\n(1.7) and (1.8) we have $p^{-1} = q = p^3$. Other results follow similarly.
\n**Theorem (1.2):** Let the (1.1) tensors α and β be defined by
\n(1.9) $\alpha = l + F^k$, $\beta = l - F^k$, then
\n(1.10) $\alpha^2 + \beta^2 = 0$, $\alpha^3 + 2\beta = 0$, $\beta^3 + 2\alpha = 0$
\n**Proof:** Using (1.2), (1.3) and (1.9), we get
\n $\alpha^2 = 2F^k$, $\beta^2 = -2F^k$ Thus we get $\alpha^2 + \beta^2 = 0$
\nThe other results follow similarly.
\n**Theorem (1.3):** Define the (1.1) tensors γ and δ by
\n(1.11) $\gamma = m + F^{2k}$, $\delta = m - F^{2k}$, then
\n(1.12) $\gamma^{-1} = \gamma$ and $\delta = I$
\n**Proof:** Using (1.2), (1.3) and (1.11), we get
\n(1.13) $\gamma = m - l$, $\gamma^2 = I$ thus $\gamma^{-1} = \gamma$ and $\delta = m + l = I$
\n**Theorem (1.4):** Define the (1.1) tensors ξ and η by
\n(1.13) $\zeta^m = m + F^n$, $\eta^m = m - F$, then
\n(1.15) $\zeta^m = m + F^n$, $\eta^m = m$

Proof: Using (1.2), (1.3) and (1.4), we have

 (1.6) $pq = qp = I$, Thus (1.7) $p^{-1} = q$, $q^{-1} = p$

Also, using (1.2), (1.3) and (1.4), we get

$$
(1.8) \t p3 = q, q3 = p
$$

From (1.7) and (1.8) we have $p^{-1} = q = p^3$. Other results follow similarly.

Theorem (1.2): Let the (1,1) tensors α and β be defined by

- (1.9) $\alpha = l + F^k$, $\beta = l F^k$, then
- (1.10) $\alpha^2 + \beta^2 = 0$, $\alpha^3 + 2\beta = 0$, $\beta^3 + 2\alpha = 0$

Proof: Using (1.2), (1.3) and (1.9), we get

$$
\alpha^2 = 2F^k
$$
, $\beta^2 = -2F^k$ Thus we get $\alpha^2 + \beta^2 = 0$

The other results follow similarly.

Theorem (1.3): Define the (1,1) tensors γ and δ by

(1.11) $\gamma = m + F^{2k}$, $\delta = m - F^{2k}$, then

(1.12)
$$
\gamma^{-1} = \gamma
$$
 and $\delta = I$

Proof: Using (1.2), (1.3) and (1.11), we get

(1.13) $\gamma = m - l$, $\gamma^2 = I$ thus $\gamma^{-1} = \gamma$ and $\delta = m + l = l$

Theorem (1.4): Define the (1.1) tensors ξ and η by

(1.14)
$$
\xi = m + F
$$
, $\eta = m - F$, then

(1.15) $\xi^n = m + F^n$, $\eta^n = m + (-1)^n F^n$

Proof: Using (1.3) and (1.14), we have

$$
\eta^2 = m + F^2, \quad \eta^3 = m - F^3 \dots, \eta^n = m + (-1)^n F^n
$$

The other results follow similarly

2. **NIJENHUIS TENSOR**:

The Nijenhuis tensors corresponding to the operators *F, l, m* be defined as

e Nijenhuis tensors corresponding to the operators *F*, *l*, *m* be defined
\n(2.1)
$$
N(X,Y) = [FX, FY] + F^2[X, Y] - F[FX, Y] - F[X, FY]
$$

\n(2.2) $N(X,Y) = [IX, lY] + l^2[X, Y] - l[IX, Y] - l[X, lY]$
\n(2.3) $N(X,Y) = [mX, mY] + m^2[X, Y] - m[mX, Y] - m[X, mY]$

$$
(2.3) \qquad N \left(X,Y \right) = \left[mX, mY \right] + m^2 \left[X,Y \right] - m \left[mX,Y \right] - m \left[X,mY \right]
$$

Theorem (2.1): Let *F, l, m* satisfy (1.1) and (1.2), then

(2.4) (i)
$$
N(mX,mY) = F^2[mX,mY]
$$

\n(ii) $mN(mX,mY) = 0$
\n(iii) $N(mX,mY) = l[mX,mY]$
\n(iv) $N(N(X,V) = m[X,V]$
\n(v) $N(N(X,mY) = 0$
\n(vi) $N(mX,VY) = 0$

Proof: With proper replacements of *X* and *Y* in (2.1), (2.2) and (2.3), and using (1.3) we get the

reuslts.

3. **METRIC F-STRUCTURE:**

Let the Riemannian metric *g* be such that

(3.1) $\mathcal{F}(X,Y) = g(FX,Y)$ is skew-symmetric. Then

- (3.2) $g(FX,Y) = -g(X,FY)$, and
	- $\{F, g\}$ is called metric *F*-structrure.

Theorem (3.1): On the metric structure-*F*, satisfying (1.1) we have
(3.3)
$$
g(F^k X, F^k Y) = (-1)^{k+1} [g(X, Y) - m(X, Y)]
$$

where

(3.4)
$$
m(X,Y) = g(mX,Y) = g(X,mY).
$$

Proof: From (1.2), (1.3) and (3.2), (3.4)

$$
g(F^k X, F^k Y) = (-1)^k g(X, F^{2k} Y)
$$

= $(-1)^k g(X, IY)$
= $(-1)^{k+1} g(X, (I-m)Y),$
= $(-1)^{k+1} [g(X, Y) - m(X, Y)]$

4. KERNEL:

Let *F* be a (1,1) tensor, we define

(4.1)
$$
Ker(F) = \{X : FX = 0\}
$$

Theorem (4.1): For the (1,1) tensor *F* satisfying (1.1), we have

(4.2) *Ker F* = *Ker F*² = = *Ker F*^{2k+1}
\n**Proof:** Let
$$
X \in Ker F
$$

\n $\Rightarrow FX = 0$
\n $\Rightarrow F^2X = 0$
\n $\Rightarrow X \in Ker F^2$

Thus

(4.3) $Ker F \subseteq Ker F^2$ Now let $X \in \text{Ker } F^2$ (4.4) $F^2X = 0$ \Rightarrow $F^3 X = 0$ (4.5) $F^{2K+1}X = 0$ Using (1.1) in (4.5) , we have (4.6) $FX = 0 \Rightarrow X \in \text{Ker } F$ Thus (4.7) $Ker F^2 \subseteq Ker F$ From (4.3) and (4.7), we get (4.8) *Ker F* = *Ker F*²

Proceeding similarly, we get (4.2)

REFERENCES:

- A Bejancu: On semi-invariant submanifolds of an almost contact metric manifold. An Stiint Univ., "A.I.I. Cuza" Lasi Sec. Ia Mat. (Supplement) 1981, 17-21.
- 2. B. Prasad: Semi-invariant submanifolds of a Lorentzian Para-sasakian manifold, Bull Malaysian Math. Soc. (Second Series) 21 (1988), 21-26.
- 3. F. Careres: Linear invairant of Riemannian product manifold, Math Proc. Cambridge Phil. Soc. 91 (1982), 99-106.
- 4. Endo Hiroshi: On invariant sub manifolds of connect metric manifolds, Indian J. Pure Appl. Math 22 (6) (June-1991), 449-453.
- 5. H.B. Pandey & A. Kumar: Anti-invariant sub manifold of almost para contact manifold. Prog. Of Maths Volume 21(1): 1987.
- 6. K. Yano: On a structure defined by a tensor field *f* of the type $(1,1)$ satisfying $f^3 + f = 0$. Tensor N.S., 14 (1963), 99-109.
- 7. R. Nivas & S. Yadav: On CR-structures and $F_{\lambda}(2\nu+3,2)$ HSU structure satisfying $F^{2\nu+3} + \lambda^r F^2 = 0$, Acta Ciencia Indica, Vol. XXXVII M, No. 4, 645 (2012).
- 8. Abhisek Singh, Ramesh Kumar Pandey & Sachin Khare : On horizontal and complete lifts of (1,1) tensor fields F satisfying the structure equation $F(2k + S, S)$ =0. International Journal of Mathematics and soft computing. Vol. 6, No. 1 (2016), 143-152, ISSN 2249-3328