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Abstract

New theorems apt to the methods of the Markov-State Models in the Galerkin
representation are derived directly from the Markov-chains theories. The an-
alytical expressions of the time evolution of the eigenvalues and those of the
relative error are derived. The new theorems are descended from measure-
theory methodologies. The newly-written theorems therefore provide wit the
analytical expressions of the time evolution of the eigenvalues and with that of
the relative error from the measure-theoretical foundations of the Markov-chains
models; the applications to protein folding are originated form the orthogonality
of the committor functions in the appropriate description(s). The newly-found
theorems are indicated of use for the other necessitated errors calculations. The
modellisation used is one apt to recover the items of information about the orig-
inating chains.
Markov-chains models offer the suitable tools of a wide range of investigation
branches: protein-folding, catalysis, polymeric materials, further molecular-
dynamics processes, kinetic-network models, electron spin resonance, etc.
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1 Introduction

Continuous-time Markov chains are considered in [1].
For a chosen subset of of Markov states,the total reward can be calculated of
the time spent of the system in the chosen subset.
The expected values of the rewards can be calculated after these formulations.
From these derivations, the Laplace Kernels can be calculated of the distribu-
tions corresponding to the rewards.
As far as Markov chains admitting a finite state space are concerned, the re-
sults are understood as being applications of the distributions of the first passage
times.
In the particular case when a single state is of interest, the distributions are
found to be independent and identically-distributed. From [2], the rewards are
expected to admit the same distributions as far as the modified chains.
The applications will be considered elsewhere, when the sojourn times of ho-
mogenous finite Markov processes in a chosen subset of states are given: they
can be investigated both in the discrete-time case and int he continuous-time
case.
The mapping of the ’pseudo aggregation is defined, of the pertinent measure
spaces.
The infinitesimal generators of the processes can be found.
From a uniformised Markov chain, the homogenous Markov chain of the chosen
subset is defined; the probability vector of the opportune (n− th) transition is
well-defined.
The time spent in a give state of a chosen subset of the of the phase space can
be assigned a random variable.
As far as Markov irreducible chains are concerned, the the existence is proven
of an infinity of sojourns with probability 1. Further perspective application are
defined in Section 9.
The aim of the present paper is the understanding of this latter hypothesis.

The reward is calculated after a measure which is invariant under the Markov
chain. The operators needed are recapitulated with the necessitated measures.
From the rewards, the expected values of the rewards are calculated. The calcu-
lations allow one to establish the projections (i.e. and the maximal projection)
of the errors.
Within these tools, is it possible to formulate new theorems about the time
evolution of the eigenvalues, which are initially formulated, for the sake of un-
derstanding the basic guidelines of the dynamics, in the Galerkin representation.
From the new theorems about the time evolution of the eigenvalues, as the fol-
lowing successive step, the corresponding new theorems are retrieved after the
items of information be recuperated about the spectral gap from the ’lag times’,
about the errors.
From the analysis in the Galerkin representation, the expressions of the stated
theorems in the formulations of the Markov chains are newly retrieved. In Sec-
tion 2, the measures used in the calculations of Markov chains are recapitulated.

“New theorems of Laplace Kernels with Radon measures in Galerkin Markov-State Models: About time evolution of
                                                                            eigenvalues and about errors”

4774



In Section 3, the path-integral formulation of the kernels for the calculation of
the expected values of the rewards are reviewed, and the expressions of the
maximal projection of the errors are reviewed.
In Section 5, new theorems about eigenvalues in the Galerkin representation are
stated.
In Section 6, new theorems about errors in the Galerkin representation are
stated.
In Section 7, the errors calculations are given.
In Section 8, the calculation are newly written of the new theorems as far as
the original chains are concerned form the ’lag time’ and for the ’spectral gap.

2 Definition of the measures of the Markov pro-

cesses

As from [3], the following definitions of integrations and measures are applied to
the different integration techniques of the rewards (which define the application
of the transition) in the opportune spaces, where the measures are proven as
invariant under the Markov(-chain) process, from which the m-states MSM are
originated.
For the n − th transition probability, the integration is of the Radon-Stieltjes
type.
An m-nonsingular transition is defined on a Banach space; the measure is there-
fore Radon-Nikodym.

Proposition 1 After an m-nonsingular transition probability, an operator U
is defined (after the reward), in L∞(m) into itself: U is the adjoint operator of
the operator T , and is linear, positive and bounded (with norm 1).

For the operator U induced after a Markov process, the following properties
hold.

Proposition 2 ∃ a finite equivalent invariant measure ν.
The operator U sends L1(ν) into L1(ν); and L∞(ν) into L∞(ν).
L∞(ν) is identical with L∞(m).
U has L1(ν)-norm equal to 1.
U has L∞(ν)-norm equal to 1.

Corollary 1 ⇒ ∃ a finite, equivalent invariant measure of the Markov process
in a finite-measure space, or in a σ-finite-measure space.

3 The path-integral formulation

The derivations of [4] and [1] are here followed.
Be (X(t), t ≥ 0) a continuous-time Markov chain, which takes values in N0,

“New theorems of Laplace Kernels with Radon measures in Galerkin Markov-State Models: About time evolution of
                                                                            eigenvalues and about errors”

4775



defined after the states S = (0, 1, ...) of the state space, and be A a fixed subset
of S.
Be f an application F : A → [0,∞).
The time τ is defined as the ’first exit time’ as

τ ≡ inf{t > 0 : X(t) /∈ A}. (1)

The function fi is the reward per unit time of the stay in the state i of the
Markov landscape.
The total reward Γ calculated over the time duree during which the system is
in A is calculated as

Γ =

∫ τ

0

fX(t)dt. (2)

The Markov chain X(t) is assumed a stable, conservative chain.
Be Q̂ the matrix of the transition rates. The matrix Q̂ is assumed to be regular.
The entry qij of Q̂ correspond to the transition rate from the state i to the state
j.
The total rate of exiting the state i is qi defined as

qi ≡ −qii =
∑
j 6=i

qij . (3)

The regularity of the matrix Q̂ implies that there exist many processes within
the given set of states; nevertheless, the minimal chain (X(t), t ≥ 0) is here
chosen.
The hypothesis is taken, that

qij > 0∀j ∈ A. (4)

From [4], the path integral Γ0 is defined as

Γ0(f) =

∫ τ0

0

f(X(t))dt (5)

with τ0 ≡ inf{t > 0 : X(t) = 0} being the ’first hitting time’ of the state 0 ∈ S,
and f non-decreasing.
The expected value Ei(Γ0(f)) | X(0) = i with i ≥ 1 is considered.

3.1 Laplace transforms

The Laplace transform of Γ is worked out as follows.
Be yi defined as

yi(θ) ≡ Ei(e
−Γθ), (6)

with yi(θ) = 1 for i /∈ A.
The characterization of the hitting times is here extended as

Ei(e
−Γθ) =

∫ ∞

0

∑
k 6=i

ethetafiuEke
−Γθ qik

qi
qie

−qiudu. (7)
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Given z = (zi, i ∈ S) such that

0 ≤ zj ≤ 1, j ∈ A, (8a)

zj = 1, j /∈ A, (8b)

zi is a solution of ∑
j∈S

qijzj = θfizi, i ∈ A. (9)

Thus,
yi(θ) ≥ z ∀i ∈ S. (10)

The probability matrix P̂ is defined from the entries pij(t), i, j ∈ S as the ’mini-
mal solution’ which satisfies the Kolmogorov backward equations. In particular,
the entries pij(t) are such that

pij(t) = (ProbX(t) = j,N(t) < ∞ | X(0) = i) (11)

wit N(t) the requested number of jumps until the time t.

4 Summary and review of techniques about eigen-

values

Following [5], the following definition is given

Definition 1 Be χA characteristic functions of the set a. The orthogonal pro-
jector Q is defined on the n-dimensional space of the step functions Dn, where
the latter has an orthonormal basis.

The projector P̂ on the transfer operator T and on Dn is defined as

P̂ = QTQ, (12)

such that L2
µ → Dn ⊂ L2

µ.
The transition matrix of the MSM Markov chain coincides with the matrix
representation of the projected transfer operator P̂ .
As an operator on a finite-dimensional space, P̂ admits a matrix representation.
The following definition is recalled.

Definition 2 the λ̃ the eigenvalue of QTQ Eq. (12) is written as

T̂ r = λ̂Mr. (13)

In Eq. (13), the operator T̂ is spelled as

T̂ij =
< qi, T qj >

ˆρ(i)
, (14)
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with the specification
ρ̂i ≡|| qi || (15)

and the mass matrix Mij as

Mij ≡
< qi, qj >

ρ̂(i)
. (16)

From [6], the orthogonality of the step functions ensures that Mij is

Mij =
< qi, qj >

µ̂i

= 1, i = j, (17a)

Mij =
< qi, qj >

µ̂i

= 0, i 6= j. (17b)

From [5], a continuous-time process is chosen.
From Eq. (13), the eigenfunction chosen can be the committors.
The matrices T̂ij and Mij are taken from [6].
As a result, the committor functions become therefore orthogonal in the chosen
Garlenkin description.

Summary and review of techniques about errors From [6], the Th. 2.2
from [7] is used, according to which the transfer operator is demonstrated to be
self-adjoint; Th. 4.2 from [6] is here recalled as

Theorem 1 Given the m-states MSM, under the dominant-eigenvalues hypoth-
esis, the chosen m dominant eigenvalues are ordered as

1 = λ0 < λ1 < ... < λm−1 (18)

and the corresponding eigenvectors wi are considered, which live in D ⊂ L2
µ

(whose corresponding algebra can be rendered unital); Q is the direction orthog-
onal to D.
The set

1 = λ̂0 < λ̂1 < ... < λ̂m−1 (19)

are the corresponding eigenvalues of QTQ Eq. (12).
Given a δ as

δ = maxi=1,...,m−1 || Q⊥wi, (20)

the maximal projection error E(δ) of the eigenvalues of D is majorised with

E(δ) ≡ maxi=1,...,m−1 | λi − λ̂i |≤ λ1(m− 1)δ2 (21)

Let the error E(δ) be defined as

E(δ) = maxi=1,...,m−1 | λi − λ̂i |≤ λi(m− 1)δ2 (22)

being
δ = maxi=1,...,m−1 || Q⊥ui || . (23)
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5 New theorems about eigenvalues

Form the guidelines in Section 5, the following new theorems hold.
From the comments on Definition 1,

Theorem 2 The scalar products of the projection (also) of the right eigenfunc-
tions remain invariant from the Markov chain to the MSM.

Proof:

As a projector, P is idempotent and selfadjoint. �

Theorem 3 The time evolution of the eigenvalues λ̃i, τ is written as

λ̃i, τ =

∫ ∞

0

e−Λi(t+τ)e−θδΛidθ (24)

Proof:
By definition of the orthogonal committors after Proposition 1. �

Theorem 4 For a discretised MSM, the time evolution of the eigenvalues in
the Galerkin description is written as

λi,nτ =

∫ ∞

0

e−θΛi(t+nτ)e−θδnΛi (25)

Proof:
From Theorem 3 after discretisation, the properties of the eigenfunctions coin-
cide with those of the continuous system. �

Corollary 2 The time evolution of the discretised two-states Markov model is
written as

λ̃2,nτ =

∫ ∞

0

e−θΛ(t+nτ)e−θδ̃nΛdθ. (26)

Proof:
After the definition of Theorem 4. �

The auxiliary time variable θ in newly-obtained Laplace kernels is chosen not
to coincide with the exit times.

6 New theorems about errors

Theorem 5 The relative error is therefore newly analytically calculated from
Eq. (22) as

Ẽ = maxi=1,...,m−1 | λ̃i − λ̂i | (27)

Proof:
The definition Eq. (22) is here upgraded. �.

The new constant δ̂ is newly calculated and its estimation proven to be improved.
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7 Errors calculations

From [6], the propagation error is newly calculated from Eq. (12) as

Ẽk =|| QT kT − (QTQ)k || (28)

From [5], the error for coarse-grained transfer operator is newly rewritten as

Êk =|| QT kT −Q(TQ)k || (29)

8 Calculations from the original chains

The study original Markov-chain process analysed is accomplished after the
assumption of the ’dominant-eigenvalues’ m-states MSM, i.e. one where the
eigenvalues chosen are real, of limited number, and ordered, i.e. as from As-
sumption 2.2 of [5].
In [5], the orthonormal basis of eigenvectors uj , j = 1, ...,m is therefore selected
in the way such that, with the associated eigenvalues λj , the evolution is codified
as

Tuj = λjuj . (30)

Moreover, the hypothesis is taken, that the remainder of the spectrum of the
operator T is in a neighbourhood Br(C) of radius r < λm.
Within this description, the the study of the ’lag time’ τ is requested, under the
’rates’ r from λj defined as

λj = e−Λjτ , (31)

i.e.
r = e−rτ , (32)

with
r

λ1
= e−τ(R−Λ1) = e−∆τ , (33)

where ∆ is named the ’spectral gap’.

9 Outlook and perspectives

In the present paper, new theorems are stated in particular representations of
Markov chains, about the time evolution of the eigenvalues and about that or
errors.
As perspective studies, sojourn time in the continuous-time Markov chains are
considered for the irreducible homogenous Markov chains on a finite state space,
i.e. as form [2].
The generators of the process are written when the representation of the output
rates of the states are found the representation of.
Transition-probability matrix representations can be given of the ’uniformised
chain’ [8].
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The relations between the infinitesimal generators are found on the appropriate
(normed) spaces.
From this respect, the ’pseudo-aggregation’ process of homogenous irreducible
Markov chains are found.
The calculations f the sojourn times of the pseudo aggregated states can be for-
mulated, after which, in the continuous-time case, analogous results are found
between the properties of the sojourn times in the chosen properties of the
Markov chains and the pertinent ’holding times’ in the ’pseudo-aggregated’ pro-
cesses properties.
Buffer states and the processors can be further considered.
The systems can be assumed, at which the processors and the buffers are oper-
ational.
The states are of interest, which belong to a set in which the system is opera-
tional.

The techniques to retrieve the pertinent qualities of the originating Markov
chains are here provided with.
The paper is organised as follows.
In Section 2, the measure-theoretical arguments about Markov chains are re-
called.
I Section 3, the path-integral formulation is recalled, for the aim of recovering
the expressions of maximal projection of the error.
In Section 5, new theorems about eigenvalues are stated in the Galerkin repre-
sentation.
In Section 6, new theorems about errors in the Galerkin representation are
stated.
In Section 7, some errors calculations are inidicated.
In Section 8, the formulation of these theorems from the original Markov chain
is newly retrieved.
Outlook and perspectives follow in Section 9.
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