International Journal of Mathematics and Computer Research
ISSN: 2320-7167

Volume 13 Issue 02 February 2025, Page no. — 4808-4817

Index Copernicus ICV: §7.55, Impact Factor: 8.615

DOL: 10.47191/ijmer/v13i2.02

On the heptadiagonal matrix CL. factorization

1
B. TALIBE, A.ATAT HADJ % D.SARSRI
1Department of Industrial Engineering and Logistics, National School of Applied Sciences of
TANGIER; Abdelmalek Essaadi University, Morocco.

2Regional Center of the Trades of Education and Training (CRMEF)-Tangier, Avenue My
Abdelaziz, Souani, BP: 3117, Tangier. Morocco.

1 Abstract

The main contribution of this paper is a new C'L type decomposition of heptadiagonal matrices
for fast inversion. We further provide two algorithms and study their execution times to mea-
sure the benefit of the proposed decomposition. Therefore, we are able to obtain a number of
interesting results.

Keywords: Heptadiagonal matrices, decomposition, C' L factorization, matrix inverse.

2 Introduction

Heptadiagonal matrices, which have seven nonzero diagonals, frequently arise in many scientific
and engineering applications, including finite difference methods for partial differential equa-
tions, signal processing, andnumerical modeling of physical phenomena. In this regard, the effi-
cient manipulation and inversion of such matrices is also key tocomputational efficiency in these
domains.

Matrix factorization, is a wonderful tool in numerical linear algebra that provides knowledge
about the latent structural properties of matrices and enables efficient computations for ma-
trix inversion, determinant calculation, eigenvalue approximation, etc. While several factoriza-
tion approaches exist, the CL factorization, which allows writing a matrix as the product of a
companion-like and a lower triangular matrix, is especially interesting due tothe sparseness and
special form of the matrices.

We will examine the CL factorization of heptadiagonal matrices in this study and identify ways
in which the configuration can be simplified as much as possible in order to eliminate unnec-
essary invert operations. This approach takes advantage of the natural sparsity of heptadiagonal
matrix in ATX-A, and offers a general method to further reduce the computational burden. This
becomes especially useful in problems where thesize becomes large enough that traditional tech-
niques become intractable or prohibitively time consuming.

In order to measure the actual usefulness of the proposed decomposition, we provide two differ-
ent algorithms for performing the CL factorization, and we study their running times and costs.
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By using comparative analysis, we can also showwhich algorithm performs the best and that our
approach works well with heptadiagonal matrices.

The results from our experiments validate the effectiveness of our proposed CL factorization and
show the potential for wide applications of the same in scientificcomputing. This work takes a
step towards improving numerical methods for structured matrices and also provides a starting
point for future workin this channel.

This work aims to explore the decomposition approach for heptadiagonal matricesin an uncon-
ventional manner. This method utilizes the CL factorization,the factorization is expressed such
that the heptadiagonal matrix A can be written as A = C'L, where:

d ¢ b a 0 0 0

v d ¢ b a 0 0

6 ~v d ¢ b a 0

a B v d ¢ b 0
A=10 o 8 v d ¢ 0| =C¢L

o -+ 0 a B ~v d c

o -~ 0 0 a B ~ d

Where C is a companion matrix and L is lower triangularmatrix. This gives us a new relationto
define the inverse of the general heptadiagonal matrix A.

3 Factorization of Heptadiagonal matrix:

In this section, we present a simple way to factorize heptadiagonal matrix A and a systematic way
to compute the matrices C andL,, where the factorized form of T with the theoretical background
will be introduced in the next theorem.

Theorem 1 . Then every heptadiagonal matrix A canbe written as A = C'L, where:

0O 1 O 0

C: ’
1 0
o .- 0 1

And
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1 0 0
d c b a 0
v
B
L= « 0f]-
0 a
b
0 c
0 0 a [ v d
With:
Ty =d, x, = (—=1)"7"( Z;ﬁ ag),
And:
d- ¢ b, ay 0
Vr '
Br
Ao e - 0
0 Gn—3
bn72
0 - 0 "o e C Cnt
0o --- 0 ap—3 Bn—2 Yn—1 d,

4 Inverse of Heptadiagonal matrix: Algorithm 1

Here we present a novel formula for inverting the generalizedheptadiagonal matrix in terms of
the inverse of the efficient factorized matrix.

lemma: Let C' a companion matrix, then det(C) = (—1)" "'z, and:
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X2 _ T3 ., _Zn-1  _ Tn
xria xia x1a xr1a
1 0 ce 0
o
e 0
0 0 1 0

Proof: It s trivial to check that C~'C = I,, where I, is the n x n identity matrix.

Theorem 2 If A is a heptadiagonal matrix and A = CL, then A= = L=1C~1,
With:

n—1
1
L7 =) UpJ", Up = ——(Up-1b + Upac + Upsd + Up—a7 + U5 + Ugg0) k > 6.
k=0

0 0
1

Where: J = |
0 0 1 0

5 Inverse of Heptadiagonal matrix: Algorithm 2

Next, we performa comparative study between our method and another existing method. This
has been done to ensure the performance and efficacy state of our algorithm, providing further
insight in terms of the strengths and improvements our technique has to offer.

Definition: The Hessenberg (or lower Hessenberg) matrices are the matrices A = [a;;] such
that this means a;; = 0 for j — ¢ > 1. More generally, the matrix is K — Hessenberg except
when A;; = 0forj — i > K.

theorem [17] : We consider a strict K — Hessenberg matrix and denote the block decompo-
sition of A by:

B FE
A= <D C) s E € Mnfk(F), B e M(nfk)xk(F)a C e MkX(nfk)(F>; D e Mk
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A is invertible exactly when CE~! B — D is invertible and if A is invertible we have:

Al = <E01 8) - <_EI’€13> (CET'B-D) ' (-CE™' L)

Toeplitz-Hessenberg matricesare the subject of research by RoksanaSlowik [16].

We apply ourwork to a Toeplitz heptadiagonal matrix A, and we then get:

Al <E01 8) - (_EI313> (CE™'B- D)™ (~CE~ I )

The blocks B, C',D and E have the expressions:

O OO L W2 &
OO W= ano
SO0 W= o o

=}
=

Q
Il
c oo
o
oo
o2 ™
=
=
= Q0
QUL O

I

o
o oo
o oo

And:

2 o o
IS S0 QO
-~ o oo
o o
a o -
o

cococo

&=
Il
o 2 ™ L
S
S
o
Q

)
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Then the inverse of the matrix £ will be:

1n72n717k
E==%" > Bk @)
k=0 r=1
Where:
—b —b c 1 —b 2¢b  d
lo=1;, [ =—; l:72—7:—7bl lo); l:73 RN
0=4 =77 02 (a) a a(1+60), 3 (a)+a2 -

1
And [, = _E(blk_l +clp—o+dl—3+ Ylk—g + Bli—5 + alk_¢)

Proof 1 Since A is a triangular Toeplitz matrix, so is A~t. We prove (11) inductively on n. We

have:
1 1
o 1b ’% 1 ll 1
0 7!152 12& —q 0 1 l; Iy 1
o oche o N A
0 (-£)® -—£43g —2 1 _5 _4 0 Loy L iy b L1
0 (bt cbpaep owloz oo SR o@fon ogog Boa] e oubon h
a a (3)
With:
—b b, c 1 —b.5 2cb d —b., 3bc* 2db+
=1 h=—; lb=(—)"——=—=(blitcl); b=(—)"+—F——; lb=(—)"——F5+ 2
a a a a a a a a a a
—b.s  4b® 3P+ 3db*  2dc b S
Andls = (—)” + 4 3 Tttt
a a a a a a
The first step of induction holds.
Consider now n > 4. We have:
1
rl -t
0 1 _c
0 I 1 _4
0 Is 1 1 a
0 l3 lo 11 1 5
0 Iy 3 ol L1 ~3 _
0 ls lg I3 lo Iy 1 -£
0 g Is lu I3 s 14 1 -&
. 0
0 s no1 :
0 1
1
I 1
Is 1 1
I3 Io 1
la l3 lo Iy 1
ls lg i3 lo 151 1
le l5 ly 13 la 11 1
l7 le ls la I3 lo 151 1
Lo In_3 o1

Then:

ln72 = _%(blnfii + Clnf4 + dln75 + VlnfG + Blnfﬁ + Oélnf’?)

4813 B. TALIBIL, IJMCR Volume 13 Issue 02 February 2025



"On the heptadiagonal matrix CL factorization"

4. Examples

Now, we present a numerical example to show how our algorithm works in practice. MATLAB
R2024b is used to test our algorithm.
Example of a9-by-9 pentadiagonal matrix

1 2 3t T+¢ 0 0 0 0 0

—2i 1 2 3t T7T+i 0 0 0 0

0.5 -2 1 2 31 7 0 0 0

442 05 =21 1 2 3t T7T+i 0 0

A= 0 4+4¢ 05 =2 1 2 3t T+1 0
0 0 44¢ 05 -2 1 2 3t T+

0 0 0 447 05 =24 1 2 31

0 0 0 0 44¢ 05 =24 1 2

0 0 0 0 0 447 05 =24 1

The columns of the inverse A~! are:

—0.1724 + 0.0749¢
—0.1215 + 0.0190:
—0.0963 — 0.28151
0.0835 + 0.01321

0.0389 + 0.2279¢
0.0769 — 0.0197:
0.0358 4 0.13141
0.0223 — 0.0455:¢

Cy =1 0.0276 —0.01127 |, Co = | 0.0317 — 0.0377:
—0.0100 — 0.0140: —0.0262 — 0.0099:
0.1633 — 0.0648: —0.0616 — 0.0868:
0.0436 — 0.0202¢ —0.0647 + 0.04114
—0.0153 + 0.1856¢ 0.0436 — 0.0202:
0.2490 4 0.11484 0.1361 — 0.04764
0.0894 + 0.3139:¢ 0.0260 — 0.0120:
—0.1841 + 0.2316¢ —0.0035 + 0.06023
0.0336 — 0.03201¢ 0.0006 + 0.0117%

Cs = [ —0.0141 — 0.0522¢ | , Cy = | 0.0188 + 0.02057

0.0290 — 0.0047¢
—0.2209 — 0.1376¢
—0.0616 — 0.08684

0.1633 — 0.0648:

0.0015 — 0.0094:
0.0290 — 0.0047:
—0.0262 — 0.0099¢
—0.0100 — 0.0140:
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0.0104 + 0.0334:
0.1334 + 0.00831
—0.0697 + 0.0258:
—0.0248 + 0.02631
0.0032 + 0.0046¢
0.0188 + 0.0205¢
—0.0141 — 0.0522¢
0.0317 — 0.0377%
0.0276 — 0.0112¢

706:

0.0090 + 0.0483:
—0.0457 4 0.0459:
0.0297 — 0.0637¢
—0.0198 — 0.0299¢
—0.0248 4- 0.02631
0.0006 + 0.0117%
0.0336 — 0.03201¢
0.0223 — 0.0455:
0.0835 + 0.01321

0.2579 — 0.2279:
0.1079 — 0.1806%
0.3352 + 0.24841
0.0297 — 0.0637:
—0.0697 + 0.0258:
—0.0035 4+ 0.0602:
—0.1841 4 0.23164
0.0358 4 0.13141
—0.0963 — 0.2815¢

708:

—0.1778 — 0.5023¢
0.0010 — 0.04851¢
0.1079 — 0.1806¢

—0.0457 + 0.0459¢
0.1334 + 0.00831
0.0260 — 0.01201¢
0.0894 + 0.3139:
0.0769 — 0.0197¢

—0.1215 + 0.0190:

709:

—0.3432 — 0.1164:
—0.1778 — 0.5023:
0.2579 — 0.2279¢
0.0090 + 0.0483:
0.0104 + 0.0334¢
0.1361 — 0.04761
0.2490 + 0.1148:
0.0389 + 0.2279:
—0.1724 4- 0.0749:

The table compares ’Toeplitz-Hessenberg’ andour algorithm (implemented in MATLAB
R2024b) execution time. Execution time (in seconds) for the two considered proposed algo-
rithms evaluated in MATLAB R2024b.

Table 1: The running time

Size of the matrix (n) | Algorithm 1 | Algorithm 2 | LU method
100 0.036954 0.111019 0.918161
200 0.061992 0.195042 2.547606
300 0.090051 0.385720 6.816085
500 0.149696 1.189282 24.165349
1000 0.314484 3.835987 149.750575

6 Conclusion

We develop new numerical and some symbolicalgorithms to compute the inverse of any non-
singular heptadiagonal matrix. They arecreated to tackle both the computation speed and the
precision in estimating matrix inversion problems. In order to rigorously assess the performance
and effectiveness of our fast algorithm (Algorithm 1), we present a comprehensive compari-
son with two well-known algorithms: the Toeplitz-Hessenberg algorithm (Algorithm 2) and the
LU decompositionmethod. The quality from the mention ofcomputational time to accuracy and
to the other factors that directly or indirectly concern the computational time and accuracy on
heptadiagonal matrix is here to be evaluated.
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