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We considered the third order nonlinear Schrodinger equation (TONSE) that models the wave 

pulse transmission in a time period less than one-trillionth of a second. We extended modified 

sub-equation method to obtain numerous exact travelling wave solutions containing sets of 

generalized hyperbolic. Trigonometric and rational solutions that are more general than classical 

ones. We followed analytical mathematical metod by constructed the transformation groups 

which help us using vector fields and Lie symmetry groups. We discussed the dynamic behavior 

and structure of the exact solutions for distinct solution of arbitrary constants .We obtained the 

symmetry reductions and exact of the equation. In addition to group-invariant solutions which 

are Jacobi elliptic function and exponential type. 
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1. INTRODUCTION 

     It is observed that most of the physical phenomena 

occurring in nature are mathematically modeled by the 

evolution equations. However, we know from the empirical 

result that many important physical processes are the type of 

nonlinear evolution equations  

 

𝐹(𝑥, 𝑡, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑥𝑥 , 𝑢𝑥𝑥𝑥 , … )

= 0                                                        (1) 

 

[1]. Well-known Korteweg- de Vries equation 

𝑢𝑡 + 6𝑢𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0                                          (2) 

      

Represents shallow water waves solution which is special 

solitary travelling wave-unchanged wave velocity and shape 

after interaction is a generalized wave packet. For these 

reasons, a travelling solution is used not only in water wave 

theory, but also in optical communication. Solutions are 

derived from the sensitive between nonlinear and dispersive 

terms. It is desirable that travelling wave solution 

transmission in communication systems should be high speed 

[7,8]. For example, the (1+1)-dimensional nonlinear  

Schrodinger equation 

𝑖𝑞𝑡 + 2|𝑞|
2𝑞 + 𝑞𝑥𝑥 = 0                                                   (3) 

     

We considered the third order equations 

 

𝑖𝑞𝑥 + 𝛼2(𝑞𝑡𝑡 + 2𝑞|𝑞|
2) − 𝑖𝛼3(𝑞𝑡𝑡𝑡 + 6𝑞𝑡|𝑞|

2) = 0     (4) 

 

From the hierarchy of the higher order given in [7]. Our main 

goal is to obtain exact analytical solutions of this equation. 

There are many methods in the literature to obtain the 

solutions of nonlinear Schrodinger equation. Recently, the 

sub-equation extended method are introduced in [8]. What 

makes this method interesting is that, unlike other methods 

that its solutions include the generalized type of hyperbolic 

and trigonometric functions. This method has a finite series 

expansion form balancing principle. In order to overcome this 

deficiency, this method which is very effective and practical 

for solving nonlinear differential equations in mathematical 

physics was used to obtain the solution under consideration. 

Another approach discussed in the study is Lie technique. In 

this algorithmic method based on the finding of 

transformation groups that leave the equation invariant, 

reduced equations and group invariant solutions can be 

obtained. The wave and group invariant solutions of equation 

(4) will be investigated with the help of these two methods . 

The reduction of equation (4) is given in (4), Lie groups 

method is employed to study equation (4).  
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2. MATHEMATICAL MODEL 

     In spite of the fact that equation (3) is successful in the describing a great number of nonlinear effects, it may be necessary to 

modify the experimental conditions. Therefore higher-order effects should be considered for the transmission of pulses to sub-

picoseconds and femtoseconds which has better performance on the transmitting information. The higher-order integrable hierarchy 

can be presented as 

𝑖𝑞𝑥 + 𝛼2(𝑞𝑡𝑡 + 2𝑞|𝑞|
2) − 𝑖𝛼3(𝑞𝑡𝑡𝑡 + 6𝑞𝑡|𝑞|

2) + 𝛼4(𝑞𝑡𝑡𝑡𝑡 + 6𝑞𝑡
∗ + 4𝑞|𝑞𝑡|

2 + 8|𝑞|2𝑞𝑡𝑡 + 6|𝑞|
4𝑞)

− 𝑖𝛼5(𝑞𝑡𝑡𝑡𝑡𝑡 + 10|𝑞|
2𝑞𝑡𝑡𝑡 + 30|𝑞|

4𝑞𝑡 + 10𝑞𝑞𝑡𝑞𝑡𝑡
∗ + 10𝑞𝑞𝑡𝑡

∗ + 10𝑞𝑞𝑡
∗𝑞𝑡𝑡 + 10𝑞𝑡

2𝑞𝑡
∗ + 20𝑞∗𝑞𝑡𝑞𝑡𝑡) + ⋯

= 0,                   (5) 

were 𝑞(𝑥, 𝑡) represents the normalized complex amplitude of the optical pulse envelope, asterisk represents the conjugation, 𝛼𝐼(𝐼 =

2,3,4, … )  are real constant parameters, 𝑥 denotes the propagation variable and 𝑡 denotes the transverse variable (time in a moving 

frame) [11]. We investigated the equation (4) which we have obtained by taking 𝛼𝑚 = 0, 𝑚 = 4,5, … . we aimed to simplify the 

equation (4). Thus we are seeking solutions of (4) with the following structure 

𝑞(𝑥, 𝑡) = 𝑝(𝜁)𝑒𝑖𝜑(𝑥,𝑡), 𝜑(𝑥, 𝑡) = −𝑘𝑥 + 𝜔𝑡 + 𝜃,            (6) 

where 𝜁 = 𝑥 − 𝑣𝑡 is the wave variable and 𝑝(𝜁) is an amplitude component of the soliton solution. Here 𝑣 𝑎𝑛𝑑 𝑘 are the velocity 

and frequency of the soliton, respectively. 𝜔 is the soliton wave number and 𝜃 is phase constant. If we use the transformation in the 

equation (4) and separate the real and imaginary parts, a pair of relations emerges. The real part equation gives 

(2𝛼2 + 6𝛼3𝜔)𝑝
3 + (𝑘 − 𝛼3𝜔

3 − 𝛼2𝜔
2)𝑝 + (𝛼2 + 3𝛼3𝑤)𝑣

2𝑝′′ = 0,                                                                                    (7) 

And imaginary part equation reads  

𝛼3𝑝
′′′𝑣3 + 𝑝′ + (6𝛼3𝑝

2𝑝′ − 2𝛼2𝜔𝑝
′ − 3𝛼3𝜔

2𝑝′)𝑣 = 0.        (8) 

Integrating equation (8) once and setting the integration constant to zero we obtain 

2𝑣𝛼3𝑝
3 + (1 + 𝑣(−2𝛼2𝜔 − 3𝛼3𝜔

2))𝑝 + 𝛼3𝑣
3𝑝′′ = 0.          (9) 

Equations (7) and (9) will be equivalent provided that 

2𝑣𝛼3
(2𝛼2+6𝛼3𝜔

=
1+𝑣(−2𝛼2𝛼2𝜔−3𝛼3𝜔

2)

𝑘−𝛼3𝜔
3−𝛼2𝜔

2 =
𝛼3𝑣

3

(𝛼2+3𝜔)𝑣
2. 

Hence, one can find the following parametric constraints, 

𝛼3 =
𝛼2

−3𝑤 + 𝑣′
𝑘 = −

−4𝑣𝛼2𝜔
2 + 2𝑣2𝛼2𝜔

3 + 3𝜔 − 𝑣

−3𝜔 + 𝑣
.          (10) 

Eventually, equations (7) and (9) can be rearranged to be in the form 

𝑝′′ +
2

𝑣2
𝑝3 +

(1 + 𝑣(−2𝛼2𝜔 − 3𝛼3𝜔
2))

𝛼3𝑣
3

𝑝 = 0.                         (11) 

     The solutions of the equation (11) will be examined using the extended modified sub-equation method. 

 

3. BASIC IDEAS OF THE EXTENDED MODIFIED SUB-EQUATION METHOD 

     We presented briefly the main steps of the extended modified sub-equation method for finding travelling wave equations [7]. 

Firstly, we considered the general of the type 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑡𝑡 , 𝑢𝑥𝑥 , … ) = 0.                                                         (12) 

Using the wave transformation 

𝑢(𝑥, 𝑡) = 𝑈(𝜁),            𝜁 = 𝑥 − 𝑡𝑣, 

we can rewrite equation (12) as the following nonlinear ordinary differential equation 

𝑄(𝑈, 𝑈′, 𝑈′′, 𝑈′′′, … ) = 0.                                                                   (13) 

Let us assume that the solution of ordinary differential equation (13) can be written as a polynomial of 𝑅(𝜁) as follows: 

𝑈(𝜁) = ∑ 𝑏𝑗

𝑛

𝑗=−𝑛

𝑅𝑖(𝜁),    𝑏𝑗 ≠ 0,                                                       (14) 

where 𝑏𝑗(−𝑛 ≤ 𝑗 ≤ 𝑛) are constants which we will be determined later. 𝑅(𝜁) 𝑖𝑛 (14) satisfies the nonlinear ordinary differential 

equation in the form 

𝑅′(𝜁) = ln (𝐴)(𝑆0 + 𝑆1𝑅(𝜁) + 𝑆2𝑅
2(𝜁),    𝐴 ≠ 0,1.                       (15) 

The coefficient classifications and corresponding solution forms of (15) are as follows: 

Case1: If ∆= 𝑆1
2 − 4𝑆0𝑆2 < 0, 𝑆2 ≠ 0 then 𝑅1(𝜁) =

𝑆1

2𝑆2
+
√−Δ𝑡𝑎𝑛𝐴(

√−Δ
2 𝜁)

2𝑆2
 

𝑅2(𝜁) = −
𝑆1
2𝑆2

−

√−Δ𝑐𝑜𝑡𝐴 (
√−Δ
2
)

2𝑆2
, 𝑅3(𝜁) =

𝑆1
2𝑆2

+
√−Δ(𝑡𝑎𝑛𝐴(√−Δ𝜁) ± √𝑟𝑝𝑠𝑒𝑐𝐴(√−∆𝜁))

2𝑆2
, 

𝑅4(𝜁) = −
𝑆1
2𝑆2

−
√−Δ (𝑐𝑜𝑡𝐴(√−Δ𝜁) ± √𝑟𝑃𝐴(√−Δ𝜁))

2𝑆2
, 
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𝑅5(𝜁) = −
𝑆1
2𝑆2

+

−√−Δ(𝑡𝑎𝑛𝐴 (
√−Δ
4
𝜁) − 𝑐𝑜𝑡𝐴 (

√−Δ
4
))

4𝑆2
. 

Case2: If Δ = 𝑆1
2 − 4𝑆0𝑆2 > 0, 𝑆2 ≠ 0, then 

𝑅6(𝜁) = −
𝑆1
2𝑆2

−

√Δ𝑡𝑎𝑛ℎ𝐴 (
√Δ
2
𝜁)

2𝑆2
, 𝑅7(𝜁) = −

𝑆1
2𝑆2

−

√Δ𝑐𝑜𝑡ℎ𝐴 (
√Δ
2
𝜁)

2𝑆2
, 

𝑅8(𝜁) = −
𝑆1
2𝑆2

−
√Δ(𝑐𝑜𝑡ℎ𝐴(√Δ𝜁) ± √𝑟𝑝𝑐𝑠𝑐ℎ𝐴(√∆𝜁))

2𝑆2
, 

𝑅9(𝜁) = −
𝑆1
2𝑆2

−
√Δ(𝑡𝑎𝑛ℎ𝐴(√Δ𝜁) ± √𝑟𝑝𝑐𝑠𝑐ℎ𝐴(√∆𝜁))

2𝑆2
, 

𝑅10(𝜁) = −
𝑆1
2𝑆2

−

√∆(𝑡𝑎𝑛ℎ𝑎 (
√Δ
4
𝜁) + 𝑐𝑜𝑡ℎ𝐴 (

√Δ
4
𝜁))

4𝑆2
. 

Case 3: If 𝑆0 = 𝑆2, 𝑆1 = 0. Then  

𝑅11(𝜁) = 𝑡𝑎𝑛𝐴(𝑆0𝜁), 𝑅12(𝜁) = −𝑐𝑜𝑡𝐴(𝑆0𝜁), 𝑅13(𝜁) = 𝑡𝑎𝑛𝐴(2𝑆0𝜁) ± √𝑟𝑝𝑠𝑒𝑐𝐴(2𝑆0𝜁) 

𝑅14(𝜁) = −𝑐𝑜𝑡𝐴(2𝑆0𝜁) ± √𝑟𝑝𝐴(2𝑆0𝜁), 

𝑅15(𝜁) =
1

2
𝑡𝑎𝑛𝐴 (

𝑆0
2
𝜁) −

1

2
𝑐𝑜𝑡ℎ𝐴 (

𝑆0
2
𝜁). 

Case 4: If 𝑆0 = −𝑆2, 𝑆1 = 0, 𝑡ℎ𝑒𝑛 

𝑅16(𝜁) = −𝑡𝑎𝑛ℎ4(𝑆0𝜁), 𝑅17(𝜁) = −𝑐𝑜𝑡ℎ4(𝑆0𝜁), 𝑅18(𝜁) − 𝑡𝑎𝑛ℎ4(2𝑆0𝜁) ± √𝑟𝑝𝑠𝑒𝑐ℎ4(2𝑆0𝜁), 

𝑅19(𝜁) = −𝑐𝑜𝑡ℎ4(2𝑆0𝜁) ± √𝑟𝑝𝑐𝑠𝑐ℎ4(2𝑆0𝜁), 

𝑅20(𝜁) = −
1

2
𝑡𝑎𝑛ℎ4 (

𝑆0
2
𝜁) −

1

2
𝑐𝑜𝑡ℎ4 (

𝑆0
2
𝜁). 

Case 5: If 𝑆1
2 − 4𝑆0𝑆2 = 0 𝑡ℎ𝑒𝑛 

𝑅21(𝜁) = −2
𝑆0(𝑆1𝜁 𝑙𝑛(𝐴) + 2)

𝑆1
2𝜁 ln(𝐴)

. 

Case 6: If 𝑆1 = 𝜆, 𝑆0 = 𝑚𝜆,𝑚 ≠ 0 𝑎𝑛𝑑 𝑆2 = 0 𝑡ℎ𝑒𝑛 

𝑅22(𝜁) = 𝐴
𝜆𝜁 −𝑚. 

Case 7: If 𝑆1 = 0, 𝑆2 = 0 𝑡ℎ𝑒𝑛 

𝑅23(𝜁) = 𝑆0𝜁 𝑙𝑛(𝐴). 

Case 8: If 𝑆0 = 0, 𝑆1 = 0 then 

𝑅24(𝜁) = −
1

𝑆2 ln(𝐴)𝜁
. 

Case 9: If 𝑆0 = 0, 𝑆1 ≠ 0 then 

𝑆25(𝜁) = −
𝑟𝑆1

𝑆2(𝑐𝑜𝑠ℎ𝐴(𝑆1𝜁) − 𝑠𝑖𝑛ℎ𝐴(𝑆1𝜁) + 𝑟)
′
 

𝑅26(𝜁) = −
(𝑐𝑜𝑠ℎ𝐴(𝑆1𝜁) + 𝑠𝑖𝑛ℎ𝐴(𝑆1𝜁))𝑆1

𝑆2(𝑐𝑜𝑠ℎ𝐴(𝑆1𝜁) + 𝑠𝑖𝑛ℎ𝐴(𝑆1𝜁) + 𝑝)
. 

Case 10: If 𝑆1 = 𝜆, 𝑆2 = 𝑚𝜆,𝑚 ≠ 0 and 𝑆0 = 0 then 

𝑅27(𝜁) =
𝑟𝐴𝜆𝜁

𝑝 − 𝑚𝑟𝐴𝜆𝜁
. 

The generalized trigonometric and hyperbolic functions used in the families given above are defined as follows: 

𝑡𝑎𝑛𝐴(𝜉) =
−𝑖(𝑟𝐴𝑖𝜉 − 𝑝𝐴−𝑖𝜉)

𝑟𝐴𝑖𝜉 + 𝑝𝐴−𝑖𝜉
, 𝑡𝑎𝑛ℎ𝐴(𝜉) =

𝑖(𝑟𝐴𝜉 − 𝑝𝐴−𝜉)

𝑟𝐴𝜉 + 𝑝𝐴=𝜉
, 

𝑐𝑜𝑡𝐴(𝜉) =
𝑖(𝑟𝐴𝑖𝜉 + 𝑝𝐴−𝑖𝜉)

𝑟𝐴𝑖𝜉 − 𝑝𝐴−𝜉
, 𝑐𝑜𝑡ℎ𝐴(𝜉) =

𝑟𝐴𝜉 + 𝑝𝐴−𝜉

𝑟𝐴𝜉 − 𝑝𝐴−𝜉
, 

𝑐𝑜𝑠𝐴(𝜉) =
𝑟𝐴𝑖𝜉 + 𝑝𝐴−𝑖𝜉

2
, 𝑐𝑜𝑠ℎ𝐴(𝜉) =

𝑟𝐴𝜉 + 𝑝𝐴−𝜉

2
, 

𝑠𝑖𝑛𝐴(𝜉) =
−𝑖(𝑟𝐴𝑖𝜉 − 𝑝𝐴−𝑖𝜉)

2
 , 𝑠𝑖𝑛ℎ𝐴(𝜉) =

𝑟𝐴𝜉 − 𝑝𝐴−𝜉

2
, 
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𝑐𝑠𝑐𝐴(𝜉) =
2𝑖

 𝑟𝐴𝑖𝜉 − 𝑝𝐴−𝜉
,                     𝑐𝑠𝑐ℎ𝐴(𝜉) =

2

𝑟𝐴𝜉 − 𝑝𝐴−𝜉
, 

𝑠𝑒𝑐𝐴(𝜉) =
2

𝑟𝐴𝑖𝜉 + 𝑝𝐴−𝑖𝜉
, 𝑠𝑒𝑐ℎ𝐴(𝜉) =

2

𝑟𝐴𝜉 + 𝑝𝐴−𝜉
.           (16) 

In equation (16), 𝜉 is an independent variable 𝑟, 𝑝 > 0 constants are deformation parameters n in (14) is a positive integer that can 

be determined by the balancing procedure constructed taking into account the highest order nonlinear terms and the highest order 

linear terms in the resulting equation. By using equation (14) and equation (15) into equation (13), an equation consisting of the 

power of 𝑅(𝜉) has to be equal to zero. Hence we obtained an algebraic system of equations in terms of 𝑏−𝑛, … , 𝑏−1, 𝑏0, 𝑏1, … , 𝑏𝑛 . 

By determining these parameters and rewriting the equation (14) using determined parameters an analytic solution 𝑢(𝑥, 𝑡) is 

obtained in closed form. 

 

4. EXACT MODIFIED SOLUTIONS OF TRAVELLING WAVE EQUATION 

     We obtained the analytical solutions for the amplitude of the travelling wave equations by using the extended modified sub-

equation method. Substituting 𝑝(𝜁) = ∑ 𝑏𝑗𝑅
𝑖(𝜁)𝑛

𝑖=−𝑛  into equation (11) and balancing 𝑝′′ 𝑤𝑖𝑡ℎ 𝑝3𝑦𝑖𝑒𝑙𝑑𝑠 𝑛 = 1. Therefor equation 

(11) admits the use of  

𝑝(𝜁) = 𝑏−1𝑅(𝜁)
−1 + 𝑏0 + 𝑏1𝑅(𝜁).                                             (17) 

Substituting equation (17) into equation (11) through equation (15) and collecting the coefficients of different powers of 𝑅(𝜁) 

setting each coefficient to zero we get the system of algebraic equations. By solving the resulting system with the help of maple  the 

following results are achieved. 

Set 1 

After the hung calculations we deduce the following relations between parameters appearing algebraic  

𝜔 =

2𝑣2𝛼2 + 3 + √
𝑆2𝑆0+6𝑣

4𝛼2
2(𝑙𝑛(𝐴))

2
𝑆1
2

4𝑣4𝛼2
2+9−24𝑣4𝛼2

2(𝑙𝑛(𝐴))
2

6𝑣𝛼2
, 

𝑏−1 = 𝑖𝑆0𝑙𝑛(𝐴)𝑣, 𝑏0 =
𝑖𝑣𝑙𝑛(𝐴)𝑆𝑖

2
, 𝑏1 = 0, 

Where 𝛼2, 𝛼3, 𝑣, 𝑘 are arbitrary constants we now can construct the exact solutions of equation (4) easily for these parameters set 

through the classification cases which is given in (3).  

Case1: If Δ = 𝑆1
2 − 4𝑆0𝑆2 < 0, 𝑆2 ≠ 0, then we have  

 

𝑞1(𝑥, 𝑡) =

(

 
 𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣 𝑙𝑛(𝐴)𝑆0 ×

(

 
 −𝑆1
2𝑆2

−

√−∆𝑐𝑜𝑡𝐴 (
√−∆(𝑥 − 𝑣𝑡)

2
)

2𝑆2

)

 
 

−1

)

 
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞2(𝑥, 𝑡) = (
𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣 𝑙𝑛(𝐴)𝑆0 × (

−𝑆1
2𝑆2

−
√−∆𝑐𝑜𝑡𝐴(𝑥 − 𝑣𝑡)

2𝑆2
)

−1

) × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃) 

𝑞3(𝑥, 𝑡) =

(

  
 𝑖𝑆1ln (𝐴)𝑣

2
+ 𝑖𝑣 𝑙𝑛(𝐴)𝑆0 ×

(

 
 
−
𝑆1
2𝑆2

+
√𝑟𝑝𝑠𝑒𝑐𝐴(√−∆(𝑥−𝑣𝑡))

√−∆(𝑡𝑎𝑛𝐴(√−∆(𝑥−𝑣𝑡)))±

2𝑆2

)

 
 

−1

)

  
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃) 

𝑞4(𝑥, 𝑡) =

(

  
 𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣 𝑙𝑛(𝐴)𝑆0 ×

(

 
 −𝑆1
2𝑆2

−
±√𝑡𝑃𝐴(√−∆(𝑥−𝑣𝑡))

√−∆(𝑐𝑜𝑡𝐴(√−∆(𝑥−𝑣𝑡)))

2𝑆2

)

 
 

−1

)

  
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃) 

 

𝑞5(𝑥, 𝑡) =

(

 
 
 
 
𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣 𝑙𝑛(𝐴)𝑆0 ×

(

 
 
 

−
𝑆1
2𝑆2

+
−𝑐𝑜𝑡𝐴(√−∆(𝑥−𝑣𝑡))

√−∆(𝑡𝑎𝑛𝐴(
√−∆(𝑥−𝑣𝑡)

4
))

4𝑆2

)

 
 
 

−1

)

 
 
 
 

× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 
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Case 2: If ∆= 𝑆1
2 − 4𝑆0𝑆2 > 0, 𝑆2 ≠ 0, then we obtain 

𝑞6(𝑥, 𝑡) = (
𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣𝑙𝑛(𝐴)𝑆0 × (−

𝑆1
2𝑆2

−
√∆𝑡𝑎𝑛ℎ𝐴 (√∆(𝑥 − 𝑣𝑡))

2𝑆2
)

−1

) × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞7(𝑥, 𝑡) =

(

 
 𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣 𝑙𝑛(𝐴)𝑆0 ×

(

 
 
−
𝑆1
2𝑆2

−

√∆𝑐𝑜𝑡ℎ𝐴 (
√∆(𝑥 − 𝑣𝑡)

2
)

2𝑆2

)

 
 

−1

)

 
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞8(𝑥, 𝑡) =

(

  
 𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣𝑙𝑛(𝐴)𝑆0 ×

(

 
 
−
𝑆1
2𝑆2

−
√𝑟𝑝𝑐𝑠𝑐ℎ𝐴(√∆(𝑥−𝑣𝑡))

√∆(𝑐𝑜𝑡ℎ𝐴(√ (𝑥−𝑣𝑡)))±

2𝑆2

)

 
 

−1

)

  
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞9(𝑥, 𝑡) =

(

 
 
 
 
 

𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+ 𝑖𝑣𝑙𝑛(𝐴)𝑆0 ×

(

 
 
 
 
 

−
𝑆1
2𝑆2

−
+𝑐𝑜𝑡ℎ𝐴(

√∆(𝑥−𝑡𝑣)
4

)

√∆(𝑡𝑎𝑛ℎ𝐴(
√∆(𝑥−𝑣𝑡)

4
))

4𝑆2

)

 
 
 
 
 

−1

)

 
 
 
 
 

× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 3: If 𝑆0 = 𝑆2, 𝑆1 = 0, then we yield 

𝑞10(𝑥, 𝑡) =
𝑖𝑣 𝑙𝑛𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

𝑡𝑎𝑛𝐴(𝑆0(𝑥 − 𝑣𝑡))
, 

𝑞11(𝑥, 𝑡) = −
𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

𝑐𝑜𝑡𝐴(𝑆0(𝑥 − 𝑣𝑡))
, 

𝑞12(𝑥, 𝑡) =
𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

𝑡𝑎𝑛𝐴(2𝑆0(𝑥 − 𝑣𝑡)) ± √𝑟𝑡𝑠𝑒𝑐𝐴(2𝑆0(𝑥 − 𝑣𝑡))
, 

𝑞13(𝑥, 𝑡) =
𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

−𝑐𝑜𝑡𝐴(2𝑆0(𝑥 − 𝑣𝑡)) ± √𝑟𝑝𝐴(2𝑆0(𝑥 − 𝑣𝑡))
, 

𝑞14(𝑥, 𝑡) =
2𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

𝑡𝑎𝑛𝐴 (
𝑆0(𝑥 − 𝑣𝑡)

2
) − 𝑐𝑜𝑡𝐴 (

𝑆0(𝑥 − 𝑣𝑡)
2

)
. 

Case 4:P If 𝑆0 = −𝑆2, 𝑆1 = 0, then one obtains 

𝑞15(𝑥, 𝑡) =
−𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

𝑡𝑎𝑛𝐴(𝑆0(𝑥 − 𝑣𝑡))
, 

𝑞16(𝑥, 𝑡) =
−𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

𝑐𝑜𝑡ℎ𝐴(𝑆0(𝑥 − 𝑣𝑡))
, 

𝑞17(𝑥, 𝑡) =
𝑖𝑣 𝑙𝑛(𝐴)𝑆0𝑒

𝑖(−𝑘𝑥+𝜔𝑡+𝜃)

−𝑐𝑜𝑡ℎ𝐴(2𝑆0(𝑥 − 𝑣𝑡))
± √𝑟𝑝𝑐𝑠𝑐ℎ𝐴(2𝑆0(𝑥 − 𝑣𝑡)). 

Case 5: If 𝑆1
2 − 4𝑆0𝑆2 = 0 then we attain 

𝑞18(𝑥, 𝑡) = (
𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
−
𝑖𝑣(𝑙𝑛(𝐴))

2
𝑆1
2(𝑥 − 𝑣𝑡)

2(𝑆1(𝑥 − 𝑣𝑡)𝑙𝑛(𝐴) + 2)
) × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃).                                                (19) 

Case 6: If 𝑆1 = 𝜆, 𝑆0 = 𝑚𝜆,𝑚 ≠ 0 𝑎𝑛𝑑 𝑆2 = 0 then we derive 

𝑞19(𝑥, 𝑡) = (
𝑖𝑆1𝑙𝑛(𝐴)𝑣

2
+
𝑖𝑣 𝑙𝑛(𝐴)𝑆0

𝐴𝜆(𝑥−𝑣𝑡) −𝑚
)𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 9: If 𝑆0 = 0, 𝑆1 ≠ 0 then we construct  

𝑞20(𝑥, 𝑡) = (𝑖𝑆1𝑙𝑛(𝐴)𝑣)2
−1𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 10: If 𝑆1 = 𝜆, 𝑆2 = 𝑚𝜆,𝑚 ≠ 0 𝑎𝑛𝑑 𝑆0 = 0 then we get 

𝑞21(𝑥, 𝑡) = (𝑖𝜆 𝑙𝑛(𝐴)𝑣)2
−1𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Set 2 

After some calculations, the following relations are obtained between the parameters in the system of algebraic equations: 
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𝜔 =
2𝑣2 + 3 + √4𝑣4𝛼2

2 + 9 − 24𝑣4𝛼2
2(𝑙𝑛(𝐴))

2
𝑆2𝑆0 + 6𝑣

4𝛼2
2(𝑙𝑛(𝐴))

2
𝑆1
2

6𝑣𝛼2
, 

𝑏−1 = 0, 𝑏0 =
𝑖𝑣 𝑙𝑛(𝐴)𝑆1

2
, 𝑏1 = 𝑖𝑆2𝑙𝑛(𝐴)𝑣, 

where 𝛼2, 𝛼3, 𝑣, 𝑘 are arbitrary constants. According to classification cases for these parameters in (3) we can construct the exact 

solutions of equation(4) as follows: 

case 1: If Δ = 𝑆1
2 − 4𝑆0𝑆2 < 0, 𝑆2 ≠ 0, 𝑡ℎ𝑒𝑛 

𝑞22(𝑥, 𝑡) = (
1

2
𝑖𝑙𝑛(𝐴)𝑣√−∆𝑡𝑎𝑛𝐴 (

√−∆(𝑥 − 𝑣𝑡)

2
)) × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞23(𝑥, 𝑡) = (
1

2
𝑖𝑙𝑛(𝐴)𝑣√−∆𝑐𝑜𝑡𝐴 (

√−∆(𝑥 − 𝑣𝑡)

2
)) × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞24(𝑥, 𝑡) =

(

 
 ±√−∆𝑠𝑒𝑐𝐴(√−∆(𝑋−𝑉𝑇))

𝑖 𝑙𝑛(𝐴)𝑣√−∆(𝑡𝑎𝑛𝐴(√−∆(𝑥−𝑣𝑡)))

2

)

 
 
× 𝑒𝑖(−𝐾𝑋+𝜔𝑇+𝜃), 

𝑞25(𝑥, 𝑡) =

(

 
 
 
 
 

−
±√𝑟𝑝𝐴(

√−∆(𝑥−𝑣𝑡)
2

)

𝑖 𝑙𝑛(𝐴)𝑣√−∆(𝑐𝑜𝑡𝐴(
√−∆(𝑥−𝑣𝑡)

2
))

2

)

 
 
 
 
 

× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞26(𝑥, 𝑡) =

(

 
 −𝑐𝑜𝑡𝐴(√−∆(𝑥−𝑣𝑡))

𝑖 𝑙𝑛(𝐴)𝑣√−∆(𝑡𝑎𝑛𝐴(√−∆(𝑥−𝑣𝑡)))

4

)

 
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 2: If ∆= 𝑆1
2 − 4𝑆0𝑆2 > 0, 𝑆2 ≠ 0 𝑡ℎ𝑒𝑛 

𝑞27(𝑥, 𝑡) = (−𝑖 𝑙𝑛(𝐴)𝑣√∆𝑡𝑎𝑛ℎ𝐴 (
√∆(𝑥 − 𝑣𝑡)

2
))2−1 × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞28(𝑥, 𝑡) = (−𝑖 𝑙𝑛(𝐴)𝑣√∆𝑐𝑜𝑡ℎ𝐴 (
√∆(𝑥 − 𝑣𝑡)

2
))2−1 × 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞29(𝑥, 𝑡) =

(

 
 
−

±√𝑟𝑝𝑐𝑠𝑐ℎ𝐴(√−∆(𝑥−𝑣𝑡))

𝑖 𝑙𝑛(𝐴)𝑣√∆(𝑐𝑜𝑡ℎ𝐴(√−∆(𝑥−𝑣𝑡)))

𝑆2

)

 
 
× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞30(𝑥, 𝑡) =

(

 
 
 
 
 
 

+𝑐𝑜𝑡ℎ𝐴(
√−∆
4
(𝑥−𝑣𝑡))

−𝑖 𝑙𝑛(𝐴)𝑣√∆(𝑡𝑎𝑛ℎ𝐴(
√−∆
4
(𝑥−𝑣𝑡)))

4

)

 
 
 
 
 
 

× 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). (20) 

Case 3: If 𝑆0 = 𝑆2, 𝑆1 = 0, then 

𝑞31(𝑥, 𝑡) = 𝑖𝑆0𝑙𝑛(𝐴)𝑣𝑡𝑎𝑛𝐴(𝑆0(𝑥 − 𝑣𝑡)) × 𝑒
𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞32(𝑥, 𝑡) = −𝑖𝑆0𝑙𝑛(𝐴)𝑣𝑐𝑜𝑡𝐴(𝑆0(𝑥 − 𝑣𝑡)) × 𝑒
𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞33(𝑥, 𝑡) = 𝑖𝑆0𝑙𝑛(𝐴)𝑣 (𝑡𝑎𝑛𝐴(2𝑆0(𝑥 − 𝑣𝑡))) ± √𝑟𝑝𝑠𝑒𝑐𝐴(2𝑆0(𝑥 − 𝑣𝑡))𝑒
𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞34(𝑥, 𝑡) = 𝑖𝑆0𝑙𝑛(𝐴)𝑣 (−𝑐𝑜𝑡𝐴(2𝑆0(𝑥 − 𝑣𝑡))) ± √𝑟𝑝𝐴(2𝑆0(𝑥 − 𝑣𝑡))𝑒
𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 
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𝑞35(𝑥, 𝑡) =
𝑖𝑆0𝑙𝑛(𝐴)𝑣

2
(𝑡𝑎𝑛𝐴 (

𝑆0(𝑥 − 𝑣𝑡)

2
)) − 𝑐𝑜𝑡𝐴 (

𝑆0(𝑥 − 𝑣𝑡)

2
) 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 4: If 𝑆0 = −𝑆2, 𝑆1 = 0 then 

𝑞36(𝑥, 𝑡) = (−𝑖𝑆2𝑙𝑛(𝐴)𝑣𝑡𝑎𝑛ℎ𝐴(𝑆0(𝑥 − 𝑣𝑡))) × 𝑒
𝑖(−𝑘𝑥+𝜔𝑡+𝜃), 

𝑞37(𝑥, 𝑡) = (𝑖𝑆2𝑙𝑛(𝐴)𝑣 (−𝑐𝑜𝑡ℎ𝐴(2𝑆0(𝑥 − 𝑣𝑡)))) ± √𝑟𝑝𝑐𝑠𝑐ℎ𝐴(2𝑆0(𝑥 − 𝑣𝑡))𝑒
𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 5: If 𝑆1
2 − 4𝑆0𝑆2 − 0 then 

𝑞38(𝑥, 𝑡) = (
−2𝑖𝑆2𝑣𝑆0(𝑆1(𝑥 − 𝑣𝑡)𝑙𝑛(𝐴) + 2)

𝑆1
2(𝑥 − 𝑣𝑡)

+
𝑖𝑣 𝑙𝑛(𝐴)𝑆1

2
) 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 6: If 𝑆1 = 𝜆, 𝑆0 = 𝑚𝜆,𝑚 ≠ 0 𝑎𝑛𝑑 𝑆2 = 0 then 

𝑞39(𝑥, 𝑡) =
𝑖𝑣 𝑙𝑛(𝐴)𝜆

2
𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 7: If 𝑆0 = 0, 𝑆1 =0 then  

𝑞40(𝑥, 𝑡) =
−𝑖𝑣

(𝑥 − 𝑣𝑡)
𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃). 

Case 8: If 𝑆0 = 0, 𝑆1 ≠ 0 then 

𝑞41(𝑥, 𝑡) = (
−𝑖 𝑙𝑛(𝐴)𝑣𝑟𝑆1

𝑐𝑜𝑠ℎ𝐴(𝑆1(𝑥 − 𝑣𝑡)) − 𝑠𝑖𝑛ℎ𝐴(𝑆1(𝑥 − 𝑣𝑡) + 𝑟)
+
𝑖𝑣 𝑙𝑛(𝐴)𝑆1

2
) 𝑒𝑖(−𝑘𝑥+𝜔𝑡+𝜃)                          (21) 

 

5. DISCUSSION AND RESULTS : 

We applied Lie symmetry analysis for  equation (1)                                                                                                                                

𝑖𝑞1 + 𝛼2(𝑞𝛼 + 2𝑞|𝑞|
2) − 𝑖𝛼3(𝑞𝑡𝑡𝑡 + 6𝑞𝑡 + |𝑞|

2) = 0   (1) 

 

Firstly, we assumed that : 𝑞(𝑥, 𝑡) = 𝑢(𝑥, 𝑡)𝑒𝑖𝑣(𝑥,𝑡),                                                (2) where u and v are real valued functions  and we 

substituted equation (2) into and split up real imaginary parts so we obtained 

−𝑣𝑥𝑢 + 𝛼2𝑢𝑡𝑡 − 𝛼2𝑢𝑣𝑡
2 + 2𝛼2𝑢

3 + 3𝛼3𝑢𝑡𝑡𝑣𝑡 + 3𝛼3𝑢𝑡𝑣𝑡𝑡 + 𝛼3𝑢𝑣𝑡𝑡𝑡 − 𝛼3𝑢𝑣𝑡
3 + 6𝛼3𝑢

3𝑣𝑡 = 0, 

2𝛼2𝑢𝑡𝑣𝑡 + 𝛼2𝑢𝑣𝑡𝑡 + 3𝛼3𝑢𝑡𝑣𝑡
2 − 𝛼3𝑢𝑡𝑡𝑡 − 6𝛼3𝑢

2𝑢𝑡 + 𝑢𝑥 + 3𝛼3𝑢𝑣𝑡𝑡𝑣𝑡 = 0                                                      (3) 

With a small parameter (3), the corresponding vector field for these transformations is 

𝑋 = 𝜁(𝑥, 𝑡, 𝑢, 𝑣)
𝜕

𝜕𝑥
+ 𝑡(𝑥, 𝑡, 𝑢, 𝑣𝑣)

𝜕

𝜕𝑡
+ 𝜂(𝑥, 𝑡, 𝑢, 𝑣)

𝜕

𝜕𝑢
+ 𝜙(𝑥, 𝑡, 𝑢, 𝑣)

𝜕

𝜕𝑦
                                                                 (4) 

When (4)  is a vector field (or generator) the transformation group of the equation or system considered is  

𝑑𝑥̂

𝑑𝜖
= 𝜁(𝑥̂, 𝑡̂, 𝑢̂, 𝑣̂),   𝑥̂|𝑥 = 0 = 𝑥, 

𝑑𝑡̂

𝑑𝜖
= 𝜏(𝑥̂, 𝑡̂, 𝑢̂, 𝑣̂), 𝜏̂|𝜖 = 0 = 𝑡, 

𝑑𝑢̂

𝑑𝜖
= 𝜂(𝑥̂, 𝑡̂, 𝑢̂, 𝑣̂),   𝑢̂|𝜖 = 0 = 𝑢. 

𝑑𝑢̂

𝑑𝜖
= 𝜂(𝑥̂, 𝑡̂, 𝑢̂, 𝑣̂),   𝑣̂|𝜖 = 0 = 𝑣, 

The third prolongation formula 𝑃𝑟(3)X is  

𝑃𝑟(3)𝑋 = 𝑥 + 𝜙𝑥
𝜕

𝜕𝑣𝑥
+ 𝜙𝑡

𝜕

𝜕𝑣𝑡
+ 𝜂𝑡

𝜕

𝜕𝑢𝑡
+ 𝜂𝑡𝑡

𝜕

𝜕𝑢𝑡𝑡
+ 𝜙𝑡𝑡

𝜕

𝜕𝑣𝑡𝑡
+ 𝜙𝑡𝑡𝑡

𝜕

𝜕𝑣𝑡𝑡𝑡
+ 𝜂𝑥

𝜕

𝜕𝑢𝑥
+ 𝜙𝑡

𝜕

𝜕𝑣𝑡
+ 𝜂𝑡

𝜕

𝜕𝑢𝑡
+ 𝜙𝑡𝑡

𝜕

𝜕𝑣𝑡𝑡

+ 𝜂𝑡𝑡𝑡
𝜕

𝜕𝑢𝑡𝑡𝑡
           (5) 

Where 𝜂𝑥, 𝜙𝑥, 𝜙𝑡 , 𝜂𝑡 , 𝜙𝑡𝑡, 𝜙𝑡𝑡𝑡 , 𝜂𝑡𝑡 , 𝜙𝑡𝑡𝑡   𝑎re  extended infinitesimal. Hence the system of (3) has the following invariant conditions 

𝜂(−𝑣𝑥 − 𝛼2𝑣𝑡
2 + 6𝛼2𝑢

2 + 𝛼3𝑣𝑡𝑡𝑡 − 𝛼3𝑣𝑡
3 + 18𝛼3𝑣𝑡𝑢

2) − 𝜙𝑥𝑢 + 𝜂𝑡𝑡(𝛼3 + 3𝛼3𝑣2)

+ 𝜙𝑡(−2𝛼2𝑢𝑣𝑡 − 3𝛼3𝑢𝑡𝑡 − 3𝛼3𝑢𝑣1
2 + 6𝛼3𝑢

3) + 𝛼3(3𝜂
𝑡𝑣𝑡𝑡 + 3𝜙

𝑡𝑡𝑢𝑡 + 𝜙
𝑡𝑡𝑡𝑢) = 0, 

𝜂(𝛼2𝑣𝑡𝑡 − 12𝛼3𝑢𝑡𝑢 + 3𝛼3𝑣𝑡𝑣𝑡𝑡) + 𝜂
𝑡(2𝛼2𝑣2 + 3𝛼3𝑣𝑡

2 − 6𝛼3𝑢
2) + 𝜙𝑡(2𝛼2𝑣𝑡 + 6𝛼3𝑢𝑡𝑣𝑡 + 3𝛼3𝑣𝑡𝑡) + 𝜙

𝑡𝑡(𝛼2𝑢 + 3𝛼3𝑢𝑣𝑡)

− 𝜂𝑡𝑡𝑡𝛼3 + 𝜂
𝑥 = 0. 

With the help of the obtained equation pair and the values of extended infinitesimals we got an over determined system of partial 

differential equation. Solving overdetermined system of PDEs  we can be obtained the following : 

𝜁 = −3𝑐1𝑥 + 𝑐3, 

𝜏 = −𝑐1𝑡 +
2𝛼2𝑐11

2

3𝛼3
𝑥 + 𝑐4, 

𝜂 = 𝑐1𝑢, 
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𝜙             =
𝛼2𝑐1
3𝛼3

𝑡 + 𝑐2,                           (6)

 

From what we have discussed we can arrive at the following 

facts : There are many methods that we can use to solve 

Travelling wave equation but we preferred to use the exact 

modified sub-equation method because it’s a method that 

works to solve mathematical problems in a physical manner  

and describes the follow of water in different geometric 

shapes. It also works to move from one solution to another 

solution in a stable , smoot , logical and symmetrical way for 

nonlinear partial differential equations which based on the  

vector field method and its characterized by accuracy   

         

6. CONCLUSION 

     We considered the third ordinary nonlinear  Schrodinger 

equation which enables studies and advances in the speed of 

information transmission that plays a major role in fields such 

as ultra short pulses, optical fiber applied physics, 

communication system, etc,…. To contribute to the studies of 

the higher order Schrodinger equation and the special cases 

of this equation in the literature .We considered equation (4) 

which was considered ∝2=
1

2
 and we studied the 

nonautonmous characteristics of the W-Shaped solutions and 

have modified the darboux transformation method to the first 

and second orders respectively. As far we knew the exact 

invariant solutions of this equation which include generalized 

hyperbolic and trigonometric functions which we 

investigated for the first time. We believe that the solutions 

we have obtained are new. One of the advantages of the 

applied methods in that it contains more general solutions 

than most of the methods in the literature. The results 

obtained by the application of these methods have shown that 

this method is effective, strong and applicable to other 

problems in mathematical physics. 
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