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In this research paper, we work on various analytic and geometric properties of a new subclass 

of analytic and multivalent function defined under the open unit disk by using generalized 

ruscheweyh derivative operator. These properties mainly include Radii of close – to – 

convexity, starlikeness and convexity, arithmetic mean property and convex set property for 

the analytic and multivalent function belonging to this new subclass.  
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I. INTRODUCTION 

Many researchers like I. Al Dawish et al.[1], E. Deniz and 

H. Orhan [4], A.R.S. Juma and S.R. Kulkarni [5], B.S. 

Keerthi et al.[7] S. Khosravianarab [8], S. Najafzadeh and 

S.R. Kulkarni [9], O. Ozkan and O. Altintas [10], J. Patel 

and P. Sahoo [11], R.K. Raina and H.M. Srivastava [12], P. 

Vijaywargiya [13], J. Yang and S.Li [14] and S. Yun et 

al.[15] discussed various properties of subclasses of 

univalent and multivalent function defined by using 

Generalised Ruscheweyh derivative operator. M.K. Aouf et 

al. [2], W.G. Atshan et al. [3] and H. Ohan [9] derived a new 

subclass of univalent and multivalent function by making 

use of Generalised Ruscheweyh Derivative. Properties like 

radii of close to convexity, starlikeness and convexity, 

arithmetic mean property, convex set property have been 

derived in research article. 

Definition 1: A function ( )f z  is said to be in a class 

( , , , )S P     if it satisfy the following condition [6] 
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II. RADII OF CLOSE – TO – CONVEXITY, 

STARLIKENESS AND CONVEXITY 

In this section, we have derive result related to radii of 

close-to-convexity, starlikeness and convexity for function 

( )f z  belonging to new subclass ( , , , )S p     of 

multivalent function. 

Theorem 1: Let us consider ( ) p k

k

k n p

f z z z


 

    

belonging to class ( , , , )S p     then the function ( )f z  is p-

valent close to convex of order m; 0 m p  in | |z R ; 

where 
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Proof: To show ( )f z  is p-valent close-to-convex of order 

m; 0 m p   in '

1| |z R  it is sufficient to show that 

1
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p

f z
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z 
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The inequality (3) is less than p-m if  
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The inequality (3) hold true if 
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Hence the theorem is proved. 

Theorem 2: Let us consider ( ) p k
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belonging to the class ( , , , )S p     then the function ( )f z  

is p-valent starlike of order m, 0 m p   in '

2| |z R  
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Proof: To show the function ( )f z  is p-valent starlike 

function of order m; 0 m p   in '

2| |z R  it is sufficient to 

show that  
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Hence the theorem is proved. 

Theorem 3: Let us consider ( ) p k
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Proof: To show ( )f z  is p-valent convex function of order 

m; 0 m p   in 
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Hence the theorem is proved. 

III. ARITHMETIC MEAN PROPERTY  

Theorem 4: Let us consider two functions ( )f z  and ( )g z  

such that ( ), ( ) ( , , , )f z g z S p     then the function 

( )h z  defined as  
1

( ) ( ) ( )
2

h z f z g z   is also 

belonging to the class ( , , , )S p    . 
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Hence the theorem is proved. 

IV. CONVEX SET PROPERTY 

Theorem 5: Let us consider two functions ( )f z  and ( )g z  

such that ( ), ( ) ( , , , )f z g z S p     then the function ( )h z  
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Hence the theorem is proved. 
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