**International Journal of Mathematics and Computer Research** 

ISSN: 2320-7167

Volume 13 Issue 02 February 2025, Page no. - 4802-4807

Index Copernicus ICV: 57.55, Impact Factor: 8.615

DOI: 10.47191/ijmcr/v13i2.01



# **On Contra hc-Continuous Functions**

## Amer Khrjia Abed

Mathematics Department, College of Education for Pure Sciences, University of Al- Muthanna, Samawa 66001, Iraq

| ARTICLE INFO                                                                                                    | ABSTRACT                                                                                      |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Published Online:                                                                                               | In this paper, by means of hc – open sets, we introduce and investigate certain ramifications |
| 01 February 2025                                                                                                | of contra – continuous and allied functions, namely, contra hc – continuous, perfectly        |
|                                                                                                                 | contra $hc - functions$ , contra $hc - open$ functions and contra $hc - closed$ functions.    |
|                                                                                                                 | along with their several properties, characterizations and mutual relationships. Further, we  |
| <b>Corresponding Author:</b>                                                                                    | introduce new type of graphs, called contra hc - closed graphs via hc - open sets. The        |
| Amer Khrjia Abed                                                                                                | relationship between these graphs and contra $hc - continuous functions$ are studied.         |
| <i>KEYWORDS:</i> $hc - open(closed)$ ; contra $hc - continuous$ functions; $pre - hc - open(closed)$ functions; |                                                                                               |
| contra hc – open(closed) functions; perfectly hc – continuous function                                          |                                                                                               |

### 1. INTRODUCTION

In 2021[1], Fadhil H. A. obtained a new class of sets in a topological space, known as h - open sets and in 2022 Elsaid L., Amjad A. Al-Rehili [2] introduced and studied the notion of hc - open. In the year 1996, Dontchev J. [3] introduced a concept known as contra – continuous. In 1999 [4], Jafari S., Noiri T. introduced new generalization of contra continuity called contra super continuity. In 2009 [5], Jawad J. K., Mustafa, H. J. introduced and studied Certain Types of contra – continuous *f*uction. Also in 2023 [6], Fadhil H. A introduced new type of continuity called contra h – continuous function.

The aim of this research is to study the properties of one types of contra – continuous functions , namely, contra hc – continuous, this type introduced by uses concept of hc – open sets . We define this class of functions by the requirement that the inverse image of each open set in the codomain is hc – closed set in the domain.

# 2. PRELIMINARIES

In this work X,Y,Z means topological space, If  $(X, \tau)$  is a topological space and  $\omega$  is subset of X then  $\operatorname{int}(\omega)$ ,  $\operatorname{Cl}(\omega)$ means the interior of  $\omega$ , closure of  $\omega$  respectively . A space X is said to be extremelly disconnected if the closure of any open set is open [3]. A subset  $\omega$  of X is called regular open if  $\omega =$  $\operatorname{int} \operatorname{Cl}(\omega)$ , respectively regular Closed if  $\omega = \operatorname{Cl}(\operatorname{int}(\omega))[7]$ .  $\omega$  is called  $\delta$  – open if  $\omega = \bigcup_{i \in I} \mathcal{M}_i$  where  $\mathcal{M}_i$  is regular open for each  $i \in I[8]$ . A subset  $\omega_0$  of the topological space X is called h – open set if for each non-empty set  $\omega_1$  in X,  $\omega_1 \neq X$  and  $\omega_1 \in \operatorname{O}(X)$ , where ,  $\omega_0 \subseteq \operatorname{int}(\omega_0 \cup \omega_1)$ . The complement of the h – open set is said to be h – closed , every open [closed] in a topological space X is h – open[h – closed] [1]. For a topological space X and  $\omega \subseteq X$ , Intersection of all open sets of X containing  $\omega$  is called kernel of  $\omega$  and is denoted by  $\kappa er(\omega)$  [3]. By a topological function  $f: X \rightarrow Y$ , it is meant a function from a topological spaceX to another topological spaceY and denoted by (TO. f) O(X) [C(X)] is the set of all open [closed] sets in X ,  $O_h(X)$  [C<sub>h</sub>(X)] is the set of all h – open [h – closed] sets in X . We will use the symbol  $\blacksquare$  to indicate end of the proof. **Definition 2. 1[2]** Let  $\omega$  be a subset and h – open of a space X ,  $\omega$  is said to be hc – open if for every  $x \in \omega$ , there exists a closed set  $\mathcal{M}$  and  $x \in \mathcal{M} \subseteq \omega$ . The set of all hc – open in a topological space X is defend by notation  $O_{hc}(X)$  , and  $X - \omega$  in a topological space X is called hc – closed .

The denote  $C_{hc}(X)$  means of the set of all hc - closed sets in a topological spaces X,  $\omega$  is called hc - clopen if  $\omega \in O_{hc}(X)$  and  $\omega \in C_{hc}(X)$ 

Remark 2.2, Let X be a topological space , clearly

- 1) If  $\omega \in O(X)$ , then  $\omega \in O_h(X)$  [1]
- 2) If  $\omega \in O_{hc}(X)$ , then  $\omega \in O_h(X)$  [2].
- 3) If  $\omega$  is clopen set in X, then  $\omega \in O_{hc}(X)[2]$ .
- If X is finite space and ω ∈ O<sub>hc</sub>(X) , then ω ∈ C(X)[2].

But The converse of this statements, need not be true in general as explain in the following example.

Let  $X = \{ \ell_1, \ell_2, \ell_3 \}$  with topology T =

- $\{X, \emptyset, \{\ell_1\}, \{\ell_2\}, \{\ell_1, \ell_2\}\}, \text{ then }$
- 1)  $\{\ell_3\} \in O_h(X)$  but  $\{\ell_3\} \notin O(X)$
- 2)  $\{\ell_2\} \in O_h(X)$  but  $\{\ell_2\} \notin O_{hc}(X)$

- 3)  $\{\ell_2, \ell_3\} \in O_{hc}(X)$  but not clopen.
- 4) If  $T = \{ X, \emptyset, \{\ell_1\} \}$ ,  $\{\ell_2, \ell_3\} \in C(X)$ , but  $\{\ell_2, \ell_3\} \notin O_{hc}(X)$ .
- Remark 2.3 [2] If X is a topological space , then
- If X is a regular space and ω is open, then ω ∈ O<sub>hc</sub>(X)
  If X is an extremelly disconnected and ω is δ open,
- then  $\omega \in O_{hc}(X)$

**Remark 2.4[2]** Let X be a topological space and  $\omega_1, \omega_2 \in O_{hc}(X)$  then

- 1)  $\omega_1 \cap \omega_2 \in O_{hc}(X)$ .
- $2) \quad \omega_1 \ \cup \ \omega_2 \quad \in \operatorname{O}_{hc}(X) \; .$

**Definition 2.5** Let X be a topological spacelet  $\omega \subseteq X$ ,  $p \in X$  we say that p is:

- 1)  $hc adherent point of \omega$ , if every  $G \in O_{hc}(X)$  and containing p meets  $\omega$ . The set of all  $hc adherent point of <math>\omega$  is called the  $hc closure of \omega$  and denoted by  $hc Cl(\omega)[2]$
- 2)  $hc interior point of \omega$ , if there exists an  $G \in O_{hc}(X)$ and containing p contained in  $\omega$ . The set of all hc interior points of  $\omega$  is called  $hc - interior of \omega$ , and denoted by  $hc - unt(\omega)$ . [2]

### Remark 2.6 [2]

- i)  $\omega \in C_{hc}(X)$  if and only if  $\omega = hc Cl(\omega)$ .
- ii)  $\omega \in O_{hc}(X)$  if and only if  $\omega = hc int(A)$ .

**Definition 2.7** A subset  $\omega$  of a topological space X is said to be hc – dense in X if hc – Cl( $\omega$ ) = X.[2]

For example in remark (2.2) ,  $\omega=\{\ell_1,\ell_3\}$  is hc-dense , since  $hc-Cl(\{\ell_1,\ell_3\})=X.$ 

Definition 2.8 A topological space X is said to be

- Urysohn space, if for each pair of distinct points x<sub>1</sub>& x<sub>2</sub> in X, there exists ω<sub>1</sub> and ω<sub>2</sub> ∈ O(X) such that x<sub>1</sub> ∈ ω<sub>1</sub>, x<sub>2</sub> ∈ ω<sub>2</sub> & Cl(ω<sub>1</sub>) ∩ Cl(ω<sub>2</sub>) = Ø.[7]
- ultra normal, if each pair of non-empty disjoint closed sets can be separated by disjoint closed sets.[9]
- 3) hc Hausdorff space, if for each two points  $x_1 \neq x_2$  in X, there exists two  $\omega_1 \& \omega_2 \in O_{hc}(X)$ , such that  $x_1 \in \omega_1$ ,  $x_2 \in \omega_2 \& \omega_1 \cap \omega_2 = \emptyset$ .
- 4) hc normal space, if for each disjoint  $H_1$ ,  $H_2\omega \in C(X)$ , there exists two  $\omega_1 \& \omega_2 \in O_{hc}(X)$  such that  $H_1 \subseteq \omega_2$ ,  $H_2 \subseteq \omega_2 \& \omega_1 \cap \omega_2 = \emptyset$ .

**Definition 2.9** Let X be a topological space, X is said to be hc - disconnected if it is the union of two nonempty hc - open disjoint subsets, otherwise X called is hc - connectedFor example : let  $X = \{\ell_1, \ell_2, \ell_3\}$  with topology  $T = \{X, \emptyset, \{\ell_1\}\}$  is hc - connected.

**Definition 2.10.** A TO.  $f f : X \rightarrow Y$  is called:

- 1) perfectly continuous, if every  $\omega \in O(Y)$ , then  $f^{-1}(\omega)$  is clopen subset of X . [5]
- 2) h continuous, if  $\omega \in O(Y)$ , then  $f^{-1}(\omega) \in O_h(X).[1]$

- 3) hc continuous, if  $\omega \in O(Y)$ , then  $f^{-1}(\omega) \in O_{hc}(X).[2]$
- 4) contra continuous, if every  $\omega \in O(Y)$ , then  $f^{-1}(\omega) \in C(X)$ .[3]
- 5) contra h continuous, if every  $\omega \in O(Y)$ , then  $f^{-1}(\omega) \in C_h(X)$ . [6]
- 6) pre hc open, if  $\omega \in O_{hc}(X)$ , then  $f(\omega) \in O_{hc}(Y)$ .
- 7) pre -hc closed, if  $\omega \in C_{hc}(X)$ , then  $f(\omega) \in C_{hc}(Y)$ .
- 8) contra hc open, if  $\omega \in O_{hc}(X)$ , then  $f(\omega) \in C_{hc}(Y)$
- 9) contra hc closed, if  $\omega \in C_{hc}(X)$ , then,  $f(\omega) \in O_{hc}(Y)$ .

#### **3. CONTRA** hc – CONTINUOUS FUNCTION

In this section, we introduce contra hc - continuous functions and perfectly hc - continuous functions, We studied their properties and the relationship between them.

**Definition 3.1** Let  $f: X \rightarrow Y$  be a TO. f f is said to be contra hc – continuous if for each  $\omega \in O(Y)$ ,  $f^{-1}(\omega) \in C_{hc}(X)$ .

For example:

Let  $f: (\mathfrak{N}, \tau_d) \to (\mathfrak{N}, \tau_d)$  be a ( $\tau_0 \cdot f$ ), where  $\tau_d$  is discrete topology on  $\mathfrak{N}$  define, f by  $f(\mathbf{x}) = \mathbf{x}$ , then f is contra hc – continuous

**Theorem 3.2** For a TO.  $f f: X \rightarrow Y$ , the following statements are equivalent:

- i) fis contra hc continuous .
- ii) For every  $H \in C(Y)$ ,  $f^{-1}(H) \in O_{hc}(X)$ .
- iii) For each  $x \in X$  and each  $H \in C(Y)$  with  $f(x) \in H$ , there exists  $\omega^* \in O_{hc}(X)$  such that  $x \in \omega^* \subseteq \omega, f(\omega) \subseteq H$

**Proof**: i)  $\rightarrow$  ii) Obvious by definition (3.1).

ii)  $\rightarrow$  iii) Let  $H \in C(Y)$  and let  $f(x) \in H$  where  $x \in X$ . Then by (ii),  $f^{-1}(H) \in O_{hc}(X)$ , Also  $x \in f^{-1}(H)$  Take  $\omega = f^{-1}(H)$ . Then  $\omega^* \in O_{hc}(X)$  and containing  $x, \omega^* \subseteq \omega \& f(\omega) \subseteq H$ .

iii)  $\rightarrow$  i) Let  $x \in X \& H \in O(Y)$ ,  $f(x) \in H \& (Y - H) \in C(Y)$ , then  $f^{-1}(Y - H) = X - f^{-1}(H)$ , &  $f(x) \in H$ . Hence by iii), there exists  $\omega^* \in O_{hc}(X)$  of X with  $x \in \omega^*$  such that  $f(\omega^*) \subseteq H$ . Then  $f^{-1}(H) \in O_{hc}(X)$ , therefore, f is contra hc – continuous.

**Lemma 3.3 [4]** The following properties hold for subsets  $\omega_1$ ,  $\omega_2$  of a space X:

- i)  $x \in \kappa er(\omega_1)$  if and only if  $\omega_1 \cap H \neq \emptyset$  for any  $H \in C(X)$
- ii)  $\omega_1 \subseteq \kappa er(\omega_1)$  and  $\omega_1 = \kappa er(\omega_1)$  if  $\omega_1 \in O(X)$
- iii) If  $\omega_1 \subseteq \omega_2$ , then  $\operatorname{ker}(\omega_1) \subseteq \operatorname{ker}(\omega_2)$ .

**Theorem 3.4** Let  $f : X \rightarrow Y$  be a bijective TO. f. Then the following statements are equivalent:

- *i*) f is contra hc continuous
- *ii*)  $f(hc Cl(\omega_1)) \subseteq \kappa er(f(\omega_1))$  for every subset  $\omega_1$  of X

*iii)* hc  $-Cl(f^{-1}(\omega_2)) \subseteq f^{-1}(\kappa er(\omega_2))$  for every subset  $\omega_2$  of Y

**Proof**: (i)  $\rightarrow$  (ii) Let  $\omega_1$  be any subset of X. Suppose that  $y \in \kappa er(f(\omega_1))$ . By Lemma (3.3 (i)), there exists  $\mathcal{F} \in$ C(Y) & containing f(x) such that  $(\omega_1) \cap \mathcal{F} = \emptyset$ . Then  $\omega_1 \cap f^{-1}(\mathcal{F}) = \emptyset$ . Since  $f^{-1}(H) \in O_{hc}(X)$  by (i), hc –  $Cl(\omega_1) \cap f^{-1}(\mathcal{F}) = \emptyset$ . That implies  $f(hc - Cl(\omega_1) \cap Cl(\omega_1))$  $\mathcal{F} = \emptyset$  and so  $y \notin f(hc - Cl(\omega_1))$ . This shows that  $f(hc - Cl(\omega_1))$ .  $Cl(\omega_1)) \subseteq \kappa er(f(\omega_1))$ 

(ii)  $\rightarrow$  (iii) Let  $\omega_2$  be any subset of Y. Then by (ii), f (hc –  $\mathsf{Cl}(f^{-1}(\omega_2)) \subseteq \operatorname{\kappaer} f \& (f^{-1}(\omega_2)) = \operatorname{\kappaer}(\omega_2)$ . Therefore, hc – Cl $(f^{-1}(\omega_2)) \subseteq f^{-1}$  (  $\kappa er(\omega_2)$ ).

(iii)  $\rightarrow$  (i) Let  $\omega_2$  $\in O(Y),$ then hc –  $Cl(f^{-1}(\omega_2)) \subseteq f^{-1}(\kappa er(\omega_2)) = f^{-1}(\omega_2)$  by (iii) and Lemma (3.3(ii)). But  $f^{-1}(\omega_2) \subseteq hc - Cl(f^{-1}(\omega_2))$ . So  $f^{-1}(\omega_2) = hc - Cl((\omega_2))$ . This means that  $f^{-1}(\omega_2) \in$  $C_{hc}(X)$  set in X so that f is cnotra hc – continuous.

### Remark 3.5:

1) If  $f: X \rightarrow Y$  is a TO. f and cnotra hc – continuous function , then f cnotra h – continuous, since every hc - closed set is h - closed . But the converse need not be true. While the converses is not true in general as the following example:

Let

 $\mathbf{X} \;=\; \mathbf{Y} \;=\; \{\ell_1, \ell_2, \ell_3\},$  $\tau_1 =$  $\{\emptyset, X, \{\ell_1\}, \{\ell_1, \ell_2\}\},\$  $\tau_2 =$ 

 $\{\emptyset, Y, \{\ell_1\}, \{\ell_2, \ell_3\}\}$ . Clearly, the identity function  $f:(X, \tau_1) \rightarrow (Y, \tau_2)$  is a cnotra h – continuous , but is not cnotra hc – continuous, since  $f^{-1}(\{\ell_2, \ell_3\}) = \{\ell_2, \ell_3\} \in$  $C_h(X)$  but  $\{\ell_2, \ell_3\} \notin C_{hc}(X)$ .

There is no relation between the cnotra – continuous 2) function and cnotra hc - continuous. Consider the following examples : Let  $X = Y = \{\ell_1, \ell_2, \ell_3\},\$  $\tau_1 =$  $\{\emptyset, X, \{\ell_1\}, \{\ell_2\}, \{\ell_1, \ell_2\}\},\$  $\tau_2 =$  $\{\emptyset, Y, \{\ell_3\}\}$ . Clearly, the identity TO.  $f f: (X, \tau_1) \rightarrow$  $(Y, \tau_2)$  is a cnotra – continuous, but is not cnotra hc – continuous , and a TO.  $f f: (X, \tau_1) \rightarrow (Y, \tau_2)$  such that  $f(\ell_1) = f(\ell_2) = \ell_3 \; ,$  $f(\ell_3) = \ell_2$  is cnotra hc – continuous, but is not cnotra - continuous.

**Theorem 3.6** Let  $f : X \rightarrow Y$  be a TO. f,

- 1) if X is  $T_1$  space and f contra h continuous ,then fis contra hc – continuous,
- 2) if X is finite space and f contra hc continuous, then *f* is continuous.
- 3) if X is regular space and f contra continuous , then f is contra hc – continuous,
- 4) if X is extremally disconnected and f contra  $\delta$  continuous , then f is contra hc – continuous

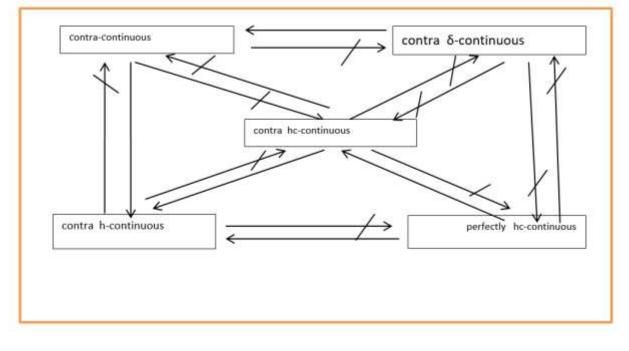
**Proof:** It directly follows from the definitions (3.1), (2.10) and remark (2.2), (2,3).

**Definition 3.10** T0.  $f f \colon X \rightarrow Y$ А is called perfectly hc – continuous, if  $f^{-1}(\omega)$  is hc – clopen in X for each open set  $\omega$  in Y.

Theorem 3.11 perfectly hc – Every continuous function is hc - continuous and contra hc continuous.

**Proof:** directly follows It from the definitions (3.1), (3.10), (2.10). ■

The next diagram explains the relations of these types of contra - continuous functions



**Theorem 3.12** If  $f_1: X \rightarrow Y$  is contralled to continuous TO. f,  $f_2: X \rightarrow Y$  is contralled to continuous TO. f and Y is Urysohn, then  $\pi = \{x \in X: f_1(x) = f_2(x)\}$  is here closed in X.

**Proof:** Let  $x \in X \setminus \pi$ . Then  $f_1(x) \neq f_2(x)$ . Since Y is Urysohn, there exists  $\omega_1 \& \omega_2 \in C(Y)$  such that  $f_1(x) \in \omega_1, f_2(x) \in \omega_2 \& Cl(\omega_1) \cap Cl(\omega_2) = \emptyset$ . Since f is contra hc – continuous,  $f_1^{-1}(Cl(V)) \in O_{hc}(X)$ . Since  $f_2$  is contra hc – continuous,  $f_2^{-1}(Cl(\omega)) \in O_{hc}(X)$ . Let  $O_1 = f_1^{-1}(Cl(\omega_1)) \& O_2 = f_2^{-1}(Cl(\omega_2)) \&$  set  $\rho = O_1 \cap O_2$ . Then  $\rho$  is a hc – open set containing x in X. Now

 $,f_1(\rho) \cap f_2(\rho) \subseteq f_1(\mathcal{O}_1) \cap f_2(\mathcal{O}_2) \subseteq \mathsf{Cl}(\omega_1) \cap \mathsf{Cl}(\omega_2) =$ 

Ø. This implies that  $\rho \cap \pi = \emptyset$  where  $\rho$  is hc - open. So x is not a hc - cluster point of  $\rho$ . Hence  $x \notin hc - Cl(\pi)$  & this completes the proof.

**Theorem 3. 13** Let  $f_1: X \rightarrow Y$  be a contra hc – continuous TO. f and  $f_2: X \rightarrow Y$  be a contra hc – continuous TO. f. If Y is Urysohn and  $f_1 = f_2$  on hc – dense set  $\omega \subseteq X$ , then  $f_1 = f_2$  on X.

**Proof:** Let  $\pi = \{x \in X : f_1(x) = f_2(x)\}$ . Since  $f_1$  is contra hc – continuous,  $f_2$  is contra hc – continuous & Y is Urysohn, by Theorem (3.12),  $\pi$  is hc – closed in X. By assumption, we have  $f_1 = f_2$  on  $\omega$  where  $\omega$  is hc – dense in X. Since  $\omega \subseteq \pi$ ,  $\omega$  is hc – dense &  $\pi$  hc – closed, we have  $X = hc - Cl(\omega) \subseteq hc - Cl(\pi) = \pi$ . Hence  $f_1 = f_2$  on X.

**Theorem 3. 14** If  $f : X \rightarrow Y$  is closed TO. f injective and contra hc – continuous and Y is ultra– normal, then X is hc – normal.

**Proof**: Let  $H_1$ ,  $H_2 \in C(X)$  and disjoint. Since f is closed and injective,  $f(H_1)$ ,  $f(H_1) \in C(Y)$  and are disjoint. Since Y is ultra normal, there exists two clopen sets  $\omega_1 \& \omega_1$  in Y, such that  $f(H_1) \subseteq \omega_1$ ,  $f(H_2) \subseteq \omega_2 \& \omega_1 \cap \omega_1 = \emptyset$ . Since f is contra hc – continuous,  $f^{-1}(\omega_1) \& f^{-1}(\omega_2) \in O_{hc}(X)$ . Also  $H_1 \subseteq f^{-1}(\omega_1)$ ,  $H_2 \subseteq f^{-1}(\omega_2) \& f^{-1}(\omega_1) \cap f^{-1}(\omega_2) = \emptyset$ . This shows that X is hc – normal.

**Theorem 3. 15** If a TO.  $f f : X \rightarrow Y$  is injective, contra hc – continuous and Y is a Urysohn space, then X is hc – Hausdorff.

**Proof:** Let x, y  $\in$  X with x  $\neq$  y. Since f is injective,  $f(x) \neq$ f(y). Since Y is a Urysohn space, there exists two open sets O<sub>1</sub> & O<sub>2</sub> in Y such that  $f(x) \in O_1$ ,  $f(y) \in O_2$  &  $Cl(O_1) \cap$  $Cl(O_2) = \emptyset$ . Since f is contra hc – continuous, by theorem (3.2) there exists  $\omega_1 \& \omega_2 \in O_{hc}(X)$ , such that  $x \in$  $\omega_1$ ,  $y \in \omega_2 \& f(\omega_1) \subseteq Cl(O_1)$ ,  $f(\omega_2) \subseteq Cl(O_2)$ . Then  $f(\omega_1) \cap f(\omega_2) = \emptyset$  & so  $f(\omega_1 \cap \omega_2) = \emptyset$ . This implies that  $\omega_1 \cap \omega_2 = \emptyset$  & hence X is hc – Hausdorff.

**Lemma 3.16** For a topological space X, X is hc - connected if and only if the subsets of X which are both hc - open and hc - closed are the sets X and  $\emptyset$ .

**Proof:**  $\Rightarrow$  Let  $\omega \in O_{hc}(X) \& \in C_{hc}(X)$ . Then  $X \setminus \omega \in O_{hc}(X) \& \in C_{hc}(X)$ . Since X is hc - connected & X is the disjoint union of hc - open sets  $\omega$  and  $X \setminus \omega$ , one of these must be empty. Hence either  $\omega = \emptyset$  or  $\omega = X$ .  $\Leftarrow$  Suppose that X is not hc - connected. Then  $X = \omega_1 \cup \omega_2$  where  $\omega_1, \omega_2$  are nonempty  $\& \omega_1, \omega_2 \in O_{hc}(X)$ , such that  $\omega_1 \cap \omega_2 = \emptyset$ . Since  $\omega_2 = X \setminus \omega_1 \in O_{hc}(X)$ ,  $\omega_1 \in O_{hc}(X) \& \in C_{hc}(X)$ . By assumption,  $\omega_1 = \emptyset$  or X. That is, either  $\omega_1 = \emptyset$  or  $\omega_2 = \emptyset$ , which is a contradiction. Therefore X is hc - connected.

**Theorem 3.17** For a topological space X, The only subsets of X which are both hc - open and hc - closed are the sets X and  $\emptyset$  If and only if each contra hc - continuous TO. *f* of X into a discrete space Y with at least two points is a constant *function*.

**Proof:**  $\Rightarrow$  Let  $f : X \rightarrow Y$  be a contrahc – continuous function from a topological space X into a discrete topological space Y. Then for each  $y \in Y, \{y\}$  is both open & closed in Y. Since f is Contrahc – continuous,  $f^{-1}(y) \in O_{hc}(X) \& \in C_{hc}(X)$ . Hence X is covered by hc – open and hc – closed covering  $\{f^{-1}(y): y \in Y\}$ .  $f^{-1}(y) = \emptyset$  or X for each  $y \in Y$ . If  $f^{-1}(y) = \emptyset$  for each  $y \in Y$ , then f is fiasco function. Hence there exists only one point  $y \in Y$  such that  $f^{-1}(y) = X$ , which shows that f is a constant function.

 $\leftarrow \text{ Let } \omega_0 \in O_{hc}(X) \& \in C_{hc}(X). \text{ Suppose } \omega_0 \neq \emptyset. \text{ Let } f: X \to Y \text{ be a contra } hc - \text{ continuous } function from a topological space X into a discrete topological space Y defined by <math>f(\omega_0) = \{\gamma\} \text{ and } f(X \setminus \omega_0) = \{\delta\}, \text{ where } \gamma, \delta \in Y \text{ and } \gamma \neq \delta. \text{ Since } f \text{ is constant so that } \omega_0 = X. \blacksquare$ 

**Theorem 3.18** Let X be a hc – connected space and Y be any topological space . If  $f: X \rightarrow Y$  is surjectiv and contra hc – continuous TO. f, then Y is not a discrete space.

**Proof:** Let Y be a discrete space &  $\omega$  be any proper nonempty subset of Y. Then  $\omega$  is both open & closed in Y. Since f is contra hc – continuous,  $f^{-1}(A) \in O_{hc}(X) \& \in C_{hc}(X)$ . Since X is hc – connected, by lemma (3.16), the only subsets of X which are both hc – open & hc – closed are the sets X and  $\emptyset$ . Hence  $f^{-1}(\omega)$  is either X or  $\emptyset$ . If  $f^{-1}(\omega) = \emptyset$ , then it contradicts to the fact that  $\omega \neq \emptyset$  and f is surjective. If  $f^{-1}(\omega) = X$ , then f is fails function. Hence Y is not a discrete space. **Theorem 3.19** If TO.  $f f : X \rightarrow Y$  is surjective, contra hc – continuous and X is hc – connected, then Y is connected.

**Proof:** Assume that Y is not connected. Then  $Y = \omega_1 \cup \omega_2$  where  $\omega_1 \& \omega_2$  are nonempty open subsets in Y such that  $\omega_1 \cap \omega_2 = \emptyset$ . Set  $H_1 = Y \setminus \omega_1 \& H_2 = Y \setminus \omega_1$ . Then  $H_1$  and  $H_2$  are nonempty closed subsets in Y. Since *f* is surjective & contra hc - continuous, then  $f^{-1}(H_1) \& f^{-1}(H_2) \in O_{hc}(X)$ .

Now,  $f^{-1}(H_1) \cap f^{-1}(H_2) = \emptyset \& f^{-1}(H_1) \cup f^{-1}(H_2) = X$ . This contradicts to the fact that X is hc – connected & so Y is connected.

**Theorem 3.20** If X is hc –connected space and  $f : X \rightarrow Y$  is contra hc – continuous TO. f, Y is T<sub>1</sub> – space, then f is constant function.

**Proof:** Let X be hc - connected. Now, since Y is a  $T_1 - space, \rho = \{ f^{-1}(y) : y \in Y \}$  is disjoint hc - open partition of X. If  $|\rho| \ge 2$  (where  $|\rho|$  denotes the cardinality  $\rho$ ), then X is the union of two nonempty disjoint hc - open sets. Since X is hc - connected, we get  $|\rho| = 1$ . Hence, *f* is constant.

**Theorem 3.21** A space X is hc - connected if every contra hc - continuous TO. *f* from a space X into any  $T_0 - space Y$  is constant.

**Proof:** suppose that X isn't hc – connected, Let  $Y = \{\alpha^*, \alpha^{**}\} \& \sigma = \{Y, \emptyset, \{\alpha^*\}, \{\alpha^{**}\}\}\)$  be a topology for Y. Let  $f: X \rightarrow Y$  be a function such that  $f(\omega) = \{\alpha^*\} \& f(X \setminus \omega) = \{\alpha^{**}\}\)$ . Then *f* is non constant & contra hc – continuous such that Y is T<sub>0</sub>, this is a contradiction , also implies that a space X have to hc – connected.

**Theorem 3.22** Let  $f_1 : X \rightarrow Y$  is and  $f_2 : X \rightarrow Z$  are a TO. f, if

- i)  $f_1$  is contra hc continuous and  $f_2$  is continuous then  $f_2$  o  $f_1$  is contra hc continuous
- ii)  $f_1$  is contra hc continuous and  $f_2$  is contra continuous then  $f_2 \circ f_1$  is hc continuous function.

**Proof:** Clearly, It conduct derive from the definitions. Type equation here.

Let  $f_1: X \to Y \& f_2: Y \to Z$  be two TO. f. The case when the composition  $f_2 \circ f_1$  is contra hc – continuous has been studied in the following theorem :

**Theorem 3.23** Let X, Y and Z be three topological spaces  $f_1: X \rightarrow Y$  and  $f_1: Y \rightarrow Z$  be two TO. *f* if ,

- i)  $f_2 \circ f_1$  is contra hc continuous and  $f_2$  is open injection, then  $f_1$  is contra n-continuous.
- ii)  $f_2 \circ f_1$  is contra hc continuous and  $f_2$  is closed injection, then  $f_1$  is contra hc continuous.

- iii)  $f_2 o f_1$  is contra hc continuous and  $f_1$  is pre hc closed surjection, then  $f_2$  is contra hc continuous.
- iv)  $f_2 o f_1$  is contra hc continuous and  $f_1$  is pre hc open surjection, then  $f_2$  is contra hc continuous.

#### proof :

- i) Let  $f_2$  be open & injection, let  $\omega \in O(Y)$ , then  $f_2(\omega) \in O(Z)$ . Since  $f_2 \circ f_1$  is contra hc continuous, then  $(f_2 \circ f_1)^{-1}(f_2(\omega)) = f_1^{-1}(f_2^{-1}(f_2(\omega))) = f_1^{-1}(\omega) \in C_{hc}(X)$ , therefore f is contra hc continuous.
- ii) Let  $f_2 \circ f_1$  be contra hc continuous &  $f_2$  be closed and injection, let  $\mathcal{M} \in C(Y)$ , then  $f_2(\mathcal{M}) \in C(Z)$ . Since  $f_2 \circ f_1$  is contra hc – continuous, then  $(f_2 \circ f_1)^{-1} (f_2(\mathcal{M})) = f_1^{-1} (f_2^{-1} (f_2(\mathcal{M}))) =$  $f_1^{-1} (\mathcal{M}) \in O_{hc}(X)$ , therefore f is contra hc – continuous.
- iii) Let  $f_2 \circ f_1$  be contra hc continuous &  $f_1$  be pre hc – closed surjection, let  $\omega \in O(\mathbb{Z})$ , then  $(f_2 \circ f_1)^{-1}(\omega) \in C_{hc}(\mathbb{X})$ . Since  $f_1$  is pre – hc – closed & surjection which implies  $(f_1(f_2 \circ f_1)^{-1}(\omega)) =$  $f_1(f_1^{-1}(f_2^{-1}(\omega))) = f_2^{-1}(\omega) \in C_{hc}(\mathbb{Y})$ , therefore  $f_2$  is contra hc – continuous.
- iv) Let  $f_2 \circ f_1$  be contra hc continuous &  $f_1$  be pre hc – open surjection, let  $\mathcal{M} \in \mathbb{C}(\mathbb{Z})$ , then  $(f_2 \circ f_1)^{-1}(\mathcal{M}) \in \mathcal{O}_{hc}(\mathbb{X})$ . Since  $f_1$  is pre – hc – open & surjection which implies  $f_1((f_2 \circ f_1)^{-1}(\mathcal{M})) =$  $f_1(f_1^{-1}(f_2^{-1}(\mathcal{M}))) = f_2^{-1}(\mathcal{M})) \in \mathcal{O}_{hc}(\mathbb{Y})$ , therefore  $f_2$  is contra hc – continuous.

## 4. CONTRA hc - CLOSEd GRAPH

In this section, have presented hc-closed and contra hc-closed graph , and we studied relationship with contra  $\,hc-continuous$  functions  $\,$  .

**Definition 4.1** The graph G(f) of a TO.  $f f : X \to Y$  is called:

- i) hc closed in X × Y, if and only if for each (x, y)  $\in$ {(X × Y)\G(f)}, there exist  $\omega_1 \in O_{hc}(X), \omega_1$ containing the element x and  $\omega_2 \in O(Y), \omega_2$ containing the element y such that  $f(\omega_1) \cap \omega_2 = \emptyset$ .
- ii) contra hc closed in X × Y if and only if for each (x, y)  $\in \{(X \times Y) \setminus G(f)\}$  there exist  $\omega_1 \in O_{hc}(X), \omega_1$  containing the element x and a  $\omega_2 \in C(Y), \omega_2$  containing the element y such that  $f(\omega_1) \cap \omega_2 = \emptyset$ .

For example : Let  $X = \{\ell_1, \ell_2\}, \quad \tau_1 = \{\emptyset, X, \{\ell_1\}, \{\ell_2\}\}$   $,Y = \{\alpha_1, \alpha_2, \alpha_3\}, \tau_2 = \{\emptyset, Y, \{\alpha_2\}, \{\alpha_3\}, \{\alpha_2, \alpha_3\}\}, \quad \text{such that}$   $f(\ell_1) = f(\ell_2) = \alpha_1$ , then  $G(f) = \{(\ell_1, \alpha_1), (\ell_2, \alpha_1)\}$  is hc – closed in  $X \times Y$ But not contra hc – closed in  $X \times Y$ . If  $(\ell_1) = f(\ell_2) = \alpha_3$ , then  $G(f) = \{(\ell_1, \alpha_3), (\ell_2, \alpha_3)\}$  is contra hc - closed in  $X \times Y$ , while not hc - closed in  $X \times Y$ .

**Theorem 4.2** If  $f: X \to Y$  is hc - continuous TO. f and Y is  $T_1$ , then G(f) is contra hc - closed in  $X \times Y$ .

**Proof:** Let  $(x, y) \in (X \times Y) \setminus G(f)$ . Then  $y \neq f(x)$  & since Y is T<sub>1</sub> there exist open set O \* of Y, such that  $f(x) \in O^*$ ,  $y \notin O^*$ . Since f is hc – continuous, there exist hc – open set O \*\* of X containing x such that  $f(O^{**}) \subseteq O^*$ . Therefore  $f(O^{**}) \cap (Y \setminus O^*) = \emptyset$  & { $Y \setminus O^*$ } is a closed set in Y containing y. Hence by above definition, G(f) is contra hc – closed in  $X \times Y$ .

**Theorem 4.3** If Y is a Urysohn and  $f: X \to Y$  is contra hc – continuous TO. f, then G(f) is contra hc – closed in  $X \times Y$ .

**Proof:** assume that  $(x, y) \in (X \times Y) \setminus G(f)$ . Then  $y \neq f(x)$  & since Y is Urysohn, there exist open sets  $\omega_1$ ,  $\omega_1$  in Y such that  $f(x) \in \omega_1$ ,  $y \in \omega_2$  &  $Cl(\omega_1) \cap Cl(\omega_2) = \phi$ . Now, since *f* is contra hc – continuous, there exist O \* hc – open set such that  $f(O^*) \subseteq Cl(\omega_1)$  which implies that  $f(O^*) \cap Cl(\omega_2) = \phi$ . Hence by definition (4.1), G(f) is contra hc – closed in X × Y.

**Theorem 4.** 4 Let  $f_1 : X \rightarrow Y$  be a TO. f and  $f_2 : X \rightarrow X \times Y$  be a graph function of  $f_1$ , defined by  $f_2(x) = (x, f_1(x))$  for every  $x \in X$ . If  $f_2$  is contra hc – continuous, then  $f_1$  is contra hc – continuous.

**Proof:** Let  $\omega$  be an open set in Y. Then X ×  $\omega$  is open in X × Y. Since  $f_2$  is contra hc – continuous,  $f_2^{-1}(X \times \omega) = f_1^{-1}(\omega)$  is hc – closed in X. This shows that f is contra hc – continuous.

### 5. CONCLUSIONS

In this work , we have presented the idea of hc - open and hc - closed sets and learned about its master properties. Then, we have used this idea to show a kind of contra - continuity . We discussed the master properties of this continuity and we have revealed the relationship between this type of continuity and other types. In addition, we have introduced graph functions using hc - open and hc - closed sets and checked their main properties. Our next works will concentrate on studying further topological concepts associated with the contra hc - continuous.

#### REFERENCES

- 1. Fadhil H. A., Appied and Computational Mathematical., 9, 1-5, 2021.
- 2. Elsaid L. , Amjad A. Al-Rehili , Applied Mathematical Sciences, 16 (12), 719 721, 2022.
- 3. Dontchev J. International journal of mathematics and mathematical Sciences , 19 , 303-310. 1996.

- 4. Jafari S., Noiri T. Annales Univ. Sci. Budapest, 42 , 27-34. 1999.
- Jawad J., K., Mustafa, H. J., "Certain Types □f Contra-Continuous Fuctions" M.sc, thesis, univ. of Kufa, 2009.
- 6. Fadhil H. A, Boetim Sociedade Paranaense Mathematical., 9, 1-9, .2023.
- 7. Adams, C. "Introduction to Topology Pure and Applied" printed in the united states of America, 123 , 2008.
- 8. Noiri T., Indian Journal of Pure and Applied Mathematics.15(3), 241–250, 1984.
- 9. Staum R., Pacific Journal of Mathematics., 50, 169-185. 1974.