
     

  

 

4831 Celestin A. Nse1, IJMCR Volume 13 Issue 02 February 2025 

 

 Volume 13 Issue 02 February 2025, Page no. – 4831-4835 

 Index Copernicus ICV: 57.55, Impact Factor: 8.615 

 DOI: 10.47191/ijmcr/v13i2.06 

Optimal Control of Linear Delay Systems with Delays in State and Control 
 

Celestin A. Nse1, Stephen T. Ban2, Yvonne A. Da-Wariboko3 

1,2,3Department of Mathematics, Rivers State University, Port Harcourt, Nigeria 

 

ARTICLE INFO ABSTRACT 

Published Online: 

08 February 2025 

 

Corresponding Author: 

Celestin A. Nse 

This paper extends the work of [6] to establish sufficient conditions for the existence and 

uniqueness of optimal control of linear delay systems with distributed delays in state and 

control. It is shown that if the system is relatively controllable, the optimal control is 

unique and bang bang and is of the form 

                              𝑢∗ = 𝑠𝑔𝑛 𝑐𝑇 ∫ 𝑋(𝑡1, 𝑡 − 𝑠)𝑑𝐻(𝑡 − 𝑠, 𝑠)
0

−ℎ
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1. INTRODUCTION  

The study of optimal control by the control theorist is fast 

becoming fundamental as it presents the best amongst 

alternatives. This has led to a thorough and careful 

presentations of the current status of control theory. The 

objective here is to present an organized treatment of the 

optimal control of linear systems with distributed delays in 

the state and control. There are many definitions of optimal 

control derivable from controllability which strongly depends 

on the class of systems we are dealing with. However, it 

should be stressed that, whatever method is used the result is 

achieved in minimum time and with minimum energy. In the 

same view, the problem reaching the origin in time t, 

corresponds to null controllability of the given system. E.N. 

Chukwu [3] settled the time optimal control problem of linear 

Neutral Functional systems without delay in the control given 

by 

   
𝑑

𝑑𝑡
𝐷(𝑡, 𝑥𝑡) = 𝐿(𝑡, 𝑥𝑡) + 𝐵𝑢(𝑡) 

where the control set is in a unit cube in the m-dimensional 

Euclidean space and the target is a continuous function in an 

n-dimensional Euclidean space also. 

In this work, necessary and sufficient conditions for the 

existence and uniqueness of optimal control is given. 

However, in some cases stability of the systems under study 

have been established as in [2] and [7]. 

In a related work, Onwuatn [6] studied the system; 

   �̇�(𝑡) = 𝐴𝑥(𝑡) + ∑ 𝐵𝑗𝑥(𝑡 − 𝑗) + ∑ 𝐷𝑗𝑢(𝑡 − 𝑗)
𝑝
𝑗=0

𝑝
𝑗=0  

and resolved the problem of optimal control of discrete 

systems in which he showed that, if a system is relatively 

controllable, then it is sufficient for it to be optimally 

controllable. 

Eke and Nse  also diagnosed the optimal control of Neutral 

systems with a non-linear base given by  

𝑑

𝑑𝑡
(𝐷(𝑡, 𝑥𝑡) = 𝐴(𝑥, 𝑡) + 𝐵(𝑡)𝑢(𝑡) 

They employ the method of the maximum principle of 

Pontryagin to be able to obtain the term of the optimal control. 

They were able to show that, if the optimal control exists, then 

it is unique and bang - bang. Klamka investigated the system, 

�̇�(𝑡) = 𝐴(𝑡)𝑥(𝑡) + ∫ [𝑑𝑠𝐻(𝑡, 𝑠)𝑢(𝑡 + 𝑠)]
0

−ℎ

 

and gave conditions for the relative controllability of the 

system. In this work, we considered that the delays are 

distributed in both the state and the control variables. We 

followed Onwuatu to  attempt the relative controllable using 

square integrable controls 

 

2. NOTATIONS AND PRELIMINARIES 

In this study, we consider the linear delay system given by  

 

�̇�(𝑡) = 𝐿(𝑡, 𝑥𝑡) + ∫ [𝑑𝑠𝐻(𝑡, 𝑠)𝑢(𝑡 +
0

−ℎ

𝑠)                                             (1.1)   

  

   𝑥(𝑡) = 𝐸𝑛 , 𝑢(𝑡) = 𝐸𝑚,  

where 

𝐿(𝑡, 𝑥𝑡) = ∑ 𝐴𝑘𝑥(𝑡 − 𝑊𝑘) +∞
𝑘=0

∫ 𝐴(𝑡, 𝜃)𝑥(𝑡, 𝜃)                             (1.2)
0

−ℎ
  

  

satisfied almost everywhere on [𝑡0, 𝑡1]. Let 𝑛, 𝑚 be positive 

integers, 𝐸 = (−∞, +∞)be the real line. 𝐸𝑛is the n-

dimensional Euclidean space with the Euclidean norm 

denoted by ‖⋅‖; j is any interval in E. The usual Lebesque 
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space of square integrable (equivalent class of ) functions 

from 𝐽 → 𝐸𝑛 be denoted by 𝐿2(𝐽, 𝐸𝑛) ⋅ 𝐿1([𝑡0, 𝑡1], 𝐸𝑛) 

denotes the space of integrable functions from 𝐿2(𝑡0, 𝑡1) to 

𝐸𝑛 ⋅  𝑁𝑛,𝑚 will be used for the collection of all 𝑛 × 𝑚matrices 

with a suitable norm. let ℎ > 0be given. For a function 

𝑥: [𝑡0 − ℎ, 𝑡] → 𝐸𝑛 and 𝑡 ∈ [𝑡0, 𝑡1], we use the symbol 𝑥𝑡 to 

denote the function on [−ℎ, 0] defined by 𝑥𝑡(𝑠) = 𝑥(𝑡 + 𝑠) 

for 𝑠 ∈ [−ℎ, 0]. The symbol 𝐶 = 𝐶([−ℎ, 0], 𝐸𝑛) denotes the 

space of continuous functions mapping the interval [−ℎ, 0], 

ℎ > 0 into 𝐸𝑛. Similarly, for functions, 𝑈: [𝑡0 − ℎ, 𝑡1] → 𝐸𝑛 , 

𝑡 ∈ [𝑡0, 𝑡1], We use 𝑢𝑡 to denote the function on [-h,0] defined 

by 𝑢(𝑠) = 𝑢(𝑡 + 𝑠) for 𝑠 ∈ [−ℎ, 0] . 𝑥(𝑡) ∈ 𝐶; 𝑢 ∈

𝐿2([𝑡0, 𝑡1], 𝐸𝑚); 𝐿(𝑡, 𝜑) is continuous in t and linear in 𝜑; 

𝐻(𝑡, 𝑠) is an 𝑛 × 𝑚matrix valued function which is 

measurable in (𝑡, 𝑠). We shall assume that 𝐻(𝑡, 𝑠) is of 

bounded variation in S on [−ℎ, 0] for each 𝑡 ∈ [𝑡0, 𝑡1]; 

𝐴(𝑡) ∈ 𝐿1([𝑡0, 𝑡1], 𝑁𝑛,𝑚). Throughout the sequel, the control 

sets of interest are  

𝐵 = 𝐿2([𝑡0, 𝑡1], 𝑁𝑛,𝑚), U 𝐿2([𝑡0, 𝑡1], 𝐸𝑚) a closed and 

bounded subset of B with zero in the interior relative to B. If 

X and Y are linear spaces and 𝑇: 𝑋 → 𝑌is a mapping, we shall 

use the symbols D(T), R(T) and N(T) to denote the domain, 

range and null spaces of T respectively. 

 

Definition 1.1: The complete stale of system (1.1) at time t is 

given by 

   𝑧(𝑡) = {𝑥(𝑡), 𝑥𝑡 , 𝑢𝑡}                                                   (1.3)

      

     

Definition 1.2: System (1.1) is relatively controllable on 

[𝑡0, 𝑡1] if for every initial complete state z(𝑡0) and every 𝑥1 ∈

𝐸𝑛 , there exists a control 𝑈 ∈ 𝐵 such that the corresponding 

trajectory of system (1.1) satisfies 𝑥(𝑡1) = 𝑥1 whenever 

𝑥(𝑡0) = 𝑥0 

Definition 1.3: System (1.1) is said to be relatively null 

controllable if in definition (1.2), the response 𝑥(𝑡) of the 

system satisfies 𝑥(𝑡1) = 0 

Definition 1.4: System (1.1) is said to be optimally 

controllable if in the set of admissible controls 𝑈 ∈ 𝐵, there 

exists a 𝑢∗ ∈ 𝑈 such that the trajectory of system (1.1) 

satisfies 𝑥(𝑡1) = 𝑥1 in minimum time. 

The solution of system (1.1) is of the form  

                   

𝑥(𝑡, 𝑡0, 𝜑, 𝑢) = 𝑋(𝑡0, 𝑡1)𝜑(0) +

∫ 𝑋(𝑡, 𝜏)[∫ 𝑑𝑋𝐻(𝑡, 𝑠)𝑢(𝜏 + 𝑠)]𝑑𝜏              (1.4)
0

−ℎ

𝑡

𝑡0
 

    

where  

𝑋(⋅, 𝑠) + 𝑋(𝑡 + 𝜃, 𝑠); −ℎ < 𝜃 < 0                  (1.5) 

      

  

and 𝑋(𝑡, 𝑠) is the fundamental matrix solution of  

�̇� = 𝐿(𝑡, 𝑥𝑡)                                                 (1.6)  

   

satisfying  

        
𝑑𝑋(𝑡,𝑠)

𝑑𝑡
= 𝐿(𝑡, 𝑋𝑡(⋅, 𝑠))              (1.7)  

                

almost everywhere in (𝑡, 𝑠) and  

),( stX {
0            𝑠 − ℎ ≤ 𝑡 < 𝑠
𝐼   𝑡 = 𝑠, 𝐼 = 𝑖𝑑𝑒𝑛𝑡𝑖𝑡𝑦

                                   (1.8)

       

 

We now define the 𝑛 × 𝑚 controllability matrix of system 

(1.1) by 

𝑊(𝑡0, 𝑡1) = ∫ {[∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏
0

−ℎ

𝑡1

𝑡0

− 𝑠, 𝑠)][∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏
0

−ℎ

− 𝑠, 𝑠)]𝑇𝑑𝜏        (1.9) 

where 

),( stH

{
𝐻(𝑡, 𝑠)  𝑓𝑜𝑟  𝑡 ≤ 𝑡1,   𝑠 ∈ 𝐸
0              𝑓𝑜𝑟 𝑡 > 𝑡1, 𝑠 ∈ 𝐸

                           (1.10) 

       

and T denotes the matrix transpose. 

 

Definition 1.5: The Reachable set 𝑅(𝑡1, 𝑡0) of system (1.1) is 

the subset of 𝐸𝑛 given by  

                       𝑅(𝑡1, 𝑡0) = {∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 −
0

−ℎ

𝑡1

𝑡0

𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏, 𝑢 ∈ 𝑈}                    (1.11)  

   

Definition 1.6: System (1.1) is said to be proper in 𝐸𝑛on 

[𝑡0, 𝑡1] if  

𝐶𝑇[∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)] =
0

−ℎ

0                                          (1.12)  

at most everywhere, 𝑡 ∈ [𝑡0, 𝑡1],  𝑐 ∈ 𝐸𝑛 implies that 𝑐 = 0. 

 

Definition 1.7: The attainable set 𝐴(𝑡) of system (1.1) is 

given by 𝐴(𝑡) = {𝑥(𝑡, 𝑢); 𝑢 ∈ 𝑈} and is the set of all possible 

solutions of the system. The optimal control problem seeks to 

determine an admissible control 𝑢∗such that the solution 

𝑥(𝑡, 𝜑, 𝑢∗) of a given system hits a target point in minimum 

time 𝑡∗. Here 𝑢∗is the optimal control and 𝑡∗, the optimal 

time. The optimal question can thus be answered: 𝑢∗ is an 

optimal control if there exist  𝑡∗ = [𝑡1, 𝑡0] for 𝑡1 ≥ 𝑡0 and  

𝑢∗ = {𝑚𝑖𝑛 𝑈 : 𝐴(𝑡, 𝑥) ∩ 𝐺(𝑡, 𝑢) ≠ 0 for some 𝑡 ≥ 𝑡1. Let 

𝑧(𝑡) be a continuous target of the general control system 

given by system (1.1), if there exists an admissible control 

𝑢 ∈ 𝑈and a time 𝑡 ≥ 0 for which 𝑥(𝑡1, 𝑢) = 𝑧(𝑡), then there 

exists an optimal control, that is, the solution hits the target in 

minimum time. 

 

3. MAIN RESULTS 

Here we state one proposition and one theorem for the 

relative controllability of system (1.1) 
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Proposition 2.1: The following statements are equivalent 

(i) 𝑊(𝑡0, 𝑡1) is non-singular for each 𝑡1 > 𝑡0 

(ii) System (1.1) is proper in 𝐸𝑛for each interval [𝑡0, 𝑡1] 

(iii) System (1.1) is relatively controllable on each 

interval [𝑡0, 𝑡1] 

Proof: (𝑖) ⇒ (𝑖𝑖) 

Let    

𝑊(𝑡0, 𝑡1) = ∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 −
0

−ℎ

𝑡1

𝑡0

𝑠, 𝑠)][∫ 𝑋(𝑡1 , 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)𝑇𝑑𝜏
0

−ℎ
      (3.1)   

Define the operator 𝐾: 𝐿2([𝑡0, 𝑡1], 𝐸𝑛) → 𝐸𝑛 . 

𝐾(𝑢) = ∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)][∫ 𝑋(𝑡1, 𝜏 −
0

−ℎ

0

−ℎ

𝑡1

𝑡0

𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏                  (3.2)     

K is a continuous linear operator from a Hilbert space to 

another. Thus 𝑅(𝑘) ⊂ 𝐸∗is a linear subspace and its 

orthogonal complement satisfies the relation  

   (𝑅(𝑘))′ = 𝑁(𝑘∗)                                                   (3.3) 

  

where 𝑘∗ is the adjoint of K. By the non – singularity of 

𝑊(𝑡0, 𝑡1), the symmetric operator 

 𝐾𝐾𝑇 = 𝑊(𝑡0, 𝑡1) is positive definite and hence  

    {𝑅(𝑘)′ = {0}}                                                                   (3.4)

  

for any 𝑐 ∈ 𝐸𝑛,  𝑢 ∈ 𝐿2;   < 𝑐, 𝑘𝑢 > = < 𝑘∗𝑐, 𝑢 > 

                   < 𝑐, 𝑘𝑢 > = < 𝑐 ∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 −
0

−ℎ

𝑡1

𝑡0

𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏 >                            (3.5)  

   

= ∫ 𝐶𝑇𝑡1

𝑡0
∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 −

0

−ℎ

𝑡1

𝑡0

𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏                             (3.6)    

Thus, k is given by 

𝐶 → 𝐶𝑇 ∫ [
𝑡1

𝑡

∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠); 𝜏 ∈ [𝑡0, 𝑡1]
0

−ℎ

 

𝑁(𝑘∗) is therefore the set of all such 𝑐 ∈ 𝐸𝑛 such that 

𝐶𝑇 [∫ 𝑋
0

−ℎ
(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)] = 0               (3.7) 

    

almost everywhere in [𝑡0, 𝑡1]. since {𝑁(𝑘∗) = {0}}, all such c 

are equal to zero; that is 𝑐 = 0. This establishes properness of 

system (1.1), 𝑇ℎ𝑎𝑡 𝑖𝑠 (𝑖𝑖) → (𝑖𝑖𝑖) 

We now show that if system (1.1) is proper, then it is 

relatively controllable on each interval [𝑡0, 𝑡1] Let 𝑐 ∈ 𝐸𝑛, if 

system (1.1) is proper, then  

𝐶𝑇 [∫ 𝑋
0

−ℎ

(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)] = 0           (3.8) 

almost everywhere implies 𝑐 = 0 

Thus,  

  ∫ 𝐶𝑇[∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏 = 0
0

−ℎ

𝑡1

𝑡0
 

For 𝑢 ∈ 𝐿2, It follows that, the only vector orthogonal to the 

set  

𝑅(𝑡1, 𝑡0) = {∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏; 𝑢 ∈
0

−ℎ

𝑡1

𝑡0

𝐿2}  

is the zero vector. Hence 𝑅(𝑡1, 𝑡0) = 0, that is, 𝑅(𝑡1, 𝑡0) =

𝐸𝑛 . This means that the system is Euclidean controllable and 

hence relative controllable on [𝑡1, 𝑡0]. That is (𝑖𝑖𝑖) ⇒ (𝑖). 

We now show that, if the system is relatively controllable 

then the controllability grammian 𝑊 = 𝑊(𝑡0, 𝑡1) is non – 

singular 

Let us assume for a contradiction that W is singular. Then 

there exists an n – vector v such that 𝑣𝑊𝑈𝑇 = 0. Then 

∫ ‖𝑣[∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]
0

−ℎ
‖

2

𝑑𝜏 =
𝑡1

𝑡0

0                                 (3.9)     

This implies that  

                    ‖𝑣[∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]
0

−ℎ
‖

2

𝑑𝜏 = 0  

 almost everywhere. Hence 

    𝑣[∫ 𝑋
0

−ℎ
(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)] = 0, 

 almost everywhere for 𝑡 ∈ [𝑡0, 𝑡1]. This contradicts the 

assumption of properness since 𝑣 ≠ 0. This completes the 

proof. 

Theorem 3.1 

System (1.1) is relatively controllable if and only if  0 ∈

𝑖𝑛𝑡𝑅(𝑡0, 𝑡1) for each 𝑡1 > 𝑡0. 

Proof: 

𝑅(𝑡0, 𝑡1) is a closed and convex subset of 𝐸𝑛. Therefore a 

point 𝑦1 on the boundary of 𝑅(𝑡0, 𝑡1) implies that there is a 

support plane 𝜋 of 𝑅(𝑡0, 𝑡1) through 𝑦1. That is 𝐶𝑇(𝑦 − 𝑦1) ≤

0 for each 𝑦 ∈ 𝑅(𝑡0, 𝑡1) where 𝑐 ≠ 0 is an outward normal to 

𝜋. If u, is the control corresponding to 𝑦1, we have 

𝐶𝑇 ∫ [∫ 𝑋(𝑡1, 𝜏, 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏
0

−ℎ

𝑡1

𝑡0

≤ 𝐶𝑇 ∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏
0

−ℎ

𝑡1

𝑡0

− 𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏                      (3.10) 

For each 𝑢 ∈ 𝑈. This last inequality holds if and only if 

𝐶𝑇 ∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢(𝜏)𝑑𝜏 ≤
0

−ℎ

𝑡1

𝑡0

𝐶𝑇 ∫ [∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢1(𝜏)𝑑𝜏
0

−ℎ

𝑡1

𝑡0
 

                                                           = ∫ |𝐶𝑇 ∫ 𝑋(𝑡1, 𝜏 −
0

−ℎ

𝑡1

𝑡0

𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠)]𝑢(𝜏)| 𝑑𝜏       (3.11)    

and   

𝑢(𝑡) = 𝑠𝑔𝑛[ ∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 −
0

−ℎ

𝑠, 𝑠)]𝑢(𝜏)                                             (3.12)  

  

As 𝑦1is on the boundary, since we always have 0 ∈ 𝑅(𝑡0, 𝑡1), 

if zero were not in the interior of 𝑅(𝑡0, 𝑡1), then it is on the 

boundary. Hence from preceding argument, this implies that  

0 = ∫ |𝐶𝑇[∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 −
0

−ℎ

𝑡1

𝑡0

𝑠, 𝑠)]𝑢(𝜏)| 𝑑𝜏                                                (3.13) 

  

So that  

                             𝐶𝑇 ∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠) = 0
0

−ℎ
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 at most everywhere on 𝑡 ∈ [𝑡0, 𝑡1]. This by definition of 

properness if systems implies that the system is not proper, 

since 𝑐 ≠ 0. 

Hence, if 0 ∈ 𝑖𝑛𝑡  𝑅(𝑡0, 𝑡1), then 

                                    𝐶𝑇 ∫ 𝑋(𝑡1, 𝜏 − 𝑠)𝑑𝐻(𝜏 − 𝑠, 𝑠) = 0
0

−ℎ
 

almost everywhere on 𝑡 ∈ [𝑡0, 𝑡1] would imply 𝑐 = 0 proving 

properness of system (1.1). We conclude that the system is 

relatively controllable on each interval. 

 

4. OPTIMALITY CONDITION OF THE 

SYSTEM 

We now return to our original goal of hitting a continuously 

moving target 𝑧(𝑡) in minimum time. Consider the trajectory 

of the system (1.1) given by  

𝑥(𝑡1, 𝑡0, 𝜑, 𝑢) = 𝑋(𝑡1, 𝑡0, 𝜑(0))

+ [∫ 𝑑𝑠𝐻(𝜏 − 𝑠, 𝑠)𝑢(𝜏, 𝑠)𝑑𝜏
0

−ℎ

 

or equivalently 

     𝑊(𝑡) = 𝑧(𝑡) − 𝑥(𝑡)                                             (4.1) 

    

Then reaching 𝑧(𝑡) at time t corresponds to 𝑧(𝑡) − 𝑥(𝑡) ≅

𝑊(𝑡) ∈ 𝑅(𝑡, 0) 

We now show that if 𝑢∗is the optimal control with time 𝑡∗ the 

optimal time, then  

𝑧(𝑡∗) = 𝑋(𝑡∗, 0)𝜑(0) − ∫ 𝑋(𝑡∗, 𝜏 −
0

−ℎ

𝑠)[∫ 𝑑𝑠𝐻(𝑡∗, 𝜏)𝑢0𝑑𝑠 ≡ 𝑢(𝑡𝜏)𝑡𝜕𝑅(𝑡∗, 0)              (4.2)
0

−ℎ

   

That is 𝑢(𝑡∗) is on the boundary of the constrained reachable 

set. 

Theorem 4.1 

Let 𝑢∗(𝑡) be the optimal control with 𝑡∗ the minimum time, 

then 𝑢(𝑡∗) ∈ 𝜕𝑅(𝑡∗, 0) is on  the boundary of 𝑅(𝑡∗, 0) 

Proof: 

Assume 𝑢∗is used to hit 𝜔(𝑡) in time 𝑡∗, then  

𝑧(𝑡∗) − 𝑋(𝑡∗, 0)𝜑(0) − ∫ 𝑋(𝑡∗, 𝜏 −
𝑡1

𝑡0

𝑠) [∫ 𝑑𝑠𝐻(𝑡∗, 𝜏
0

−ℎ
) 𝑢0𝑑𝜏 ≡ 𝑢(𝑡∗) ∈ 𝑅(𝑡∗, 0)          (4.3)

  

Assume 𝑢(𝑡∗) is not on the boundary then  𝑢(𝑡∗) ∈ 𝑖𝑛𝑡 

𝑅(𝑡∗, 0),  𝑡∗ > 0. Hence, there exists a ball 𝐵(𝑢(𝑡∗), 𝑟) of 

radius r, about 𝑢(𝑡∗) such that 𝐵(𝑢(𝑡∗), 𝑟) ∈ 𝑅(𝑡∗, 0). Since 

𝑅(𝑡∗, 0) is a continuous function of t, there exists a 𝛿 > 0 

such that 𝐵(𝑢(𝑡∗), 𝑟) ∈ 𝑅(𝑡∗, 0) for  

𝑡∗ − 𝛿 ≤ 𝑡 ≤ 𝑡∗.  Therefore 𝑢(𝑡∗) ∈ 𝜕𝑅(𝑡∗, 0) for 𝑡 − 𝛿 ≤ 𝑡. 

This contradicts the optimality of 𝑡∗, Hence 

𝑢(𝑡∗) ∈ 𝜕𝑅(𝑡∗, 0) 

Theorem 4.2 

If 𝑢∗be an optimal control transferring system (1.1) from 𝑥(0) 

to 𝑍(𝑡∗) in minimum time, 𝑡∗, then there exists a non-zero 

function 𝐶 ∈ 𝐸𝑛 such that  

     𝑢∗(𝑡) = 𝑠𝑔𝑛{ 𝐶𝑇𝑋(𝑡, 𝜏 − 𝑠)𝐻}                  (4.4) 

  

 

Proof: 

Define 𝑦(𝑡) − 𝑋(𝑡, 𝜏 − 𝑠)𝐻 

             𝑢(𝑡∗) = 𝑧(𝑡∗) − 𝑋(𝑡∗, 0)𝜑(0) − ∫ 𝑋(𝑡∗, 𝜏 −
𝑡1

𝑡0

𝑠) [∫ 𝑑𝑠𝐻(𝑡∗, 𝜏
0

−ℎ
) 𝑢0𝑑𝜏               (4.5)   

That is,  

𝑢(𝑡∗) = ∫ 𝑋(𝑡∗, 𝜏 − 𝑠)𝐻𝑢∗(𝜏)𝑑𝜏
𝑡1

𝑡0

 

𝐻 = ∫ 𝑋(𝑡∗, 𝜏 − 𝑠)𝐻𝑢∗(𝜏)𝑑𝜏
𝑡∗

𝑡0

 

From theorem (3.1), 𝑢(𝑡∗) is on the boundary 𝜕𝑅(𝑡∗, 0) of 

constrained reachable set. The supporting hyper plane 

theorem (see Hermes and Lasalle[4]) then implies the 

existence of a non trivial hyperplane with outward normal c 

(say) supporting 𝜕𝑅(𝑡∗, 0) at 𝑢(𝑡∗). In other words,  

𝐶𝑇𝑢(𝑡∗) ≥ 𝑐𝑇𝑦 for all 𝑦 ∈ 𝑅(𝑡∗, 0) 

That is 

𝐶𝑇 ∫ 𝑋
𝑡1

𝑡0
(𝑡∗, 𝜏 − 𝑠)𝐻𝑢∗(𝜏)𝑑𝜏 ≥ 𝐶𝑇 ∫ 𝑋(𝑡∗, 𝜏 −

𝑡∗

𝑡0

𝑠)𝐻𝑢(𝜏)𝑑𝜏 for all 𝑢 ∉ 𝑈 

Rearranging gives 

𝐶𝑇 ∫ 𝑋(𝑡∗, 𝑠)𝐻[𝑢∗(𝜏) − 𝑢(𝜏)]𝑑𝜏
𝑡∗

𝑡0

≥ 0 

This can happen only if 

𝑢∗ = 𝑠𝑔𝑛{ 𝐶𝑇𝑋(𝑡∗, 𝜏 − 𝑠)𝐻}                                           (4.6)

  

5. APPLICATION AND CONCLUSION 

Consider the Simple Harmonic Oscillator given by  

�̈� + 𝑥 = 𝑢(𝑡);  |𝑢| ≤ 1 

The principal matrix solution of (4.1) above is 

𝑋(𝑡) = (
𝑐𝑜𝑠𝑡 𝑠𝑖𝑛𝑡

−𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡
) 

From which we infer that 

𝑋−1(𝑡) = (
𝑐𝑜𝑠𝑡 −𝑠𝑖𝑛𝑡
𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡

) 

We can easily verify by the Kalman Rank condition that the 

system is controllable, that is rank (𝐵, 𝐴𝐵) = 𝑛 = 2 

Also, the eigenvalues are ±𝑖 indicating non – negative real 

parts. Hence, by Brunday [10], the solution is uniformly 

asymptotically stable. This solution goes to zero as 𝑡 → ∞. 

Since the system is controllable, there exists an optimal 

control 𝑢∗(𝑡) that drives the solution to the origin in finite 

time t. this optimal control is of the form of Hermes and 

Lasalle in [4] 

That is 𝑠𝑔𝑛( 𝐶𝑇𝑌(𝑡)), were 

 𝐶𝑇𝑌(𝑡) =

(𝐶1 𝐶2) (
𝑐𝑜𝑠𝑡 −𝑠𝑖𝑛𝑡
𝑠𝑖𝑛𝑡 𝑐𝑜𝑠𝑡

) (
0
1

)

  

= 𝐶1𝑆 𝑖𝑛𝑡 + 𝐶2𝐶𝑜𝑠𝑡 ≡ (𝐶1
2 + 𝐶2

2)(𝑆𝑖𝑛(𝑡 + 𝛿)); 𝑡 ≤ 𝛿 ≤ 𝜋 
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𝑠𝑔𝑛( 𝐶𝑇𝑌(𝑡) = 𝑠𝑔𝑛[ 𝑠𝑖𝑛( 𝑡 + 𝛿)] = 

{

1  𝑖𝑓 𝑠𝑖𝑛(𝑡 + 𝛿) > 0

0   𝑖𝑓 𝑠𝑖𝑛(𝑡 + 𝛿) = 0 

−1  𝑖𝑓 𝑠𝑖𝑛(𝑡 + 𝛿) < 0

  

This illustrate that the Simple Harmonic Oscillator can 

optimally be controlled. 

In conclusion, we have shown that a linear delay system with 

distributed delays in state and control can be relatively 

controlled if the system is proper and the controllability 

Grammian is non-singular. We also show that a necessary 

condition for existence of the optimal control is that it must 

be on the boundary of the reachable set. We proceeded by 

showing the form of the optimal control for the system in 

question. Finally, we join Chukwu in [3] and Onwuata in [6] 

to conclude affirmatively that if a system is relatively 

controllable, then optimal control is unique and Bang-Bang  
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