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ABSTRACT. The objective of this paper is to obtain a sharp upper bound to
the second Hankel determinant Hy(2) for the function f(z) when it belongs to
the class S§*(A,1,8) of Bazilevic functions associated with extended multiplier

transformation operator.

1. INTRODUCTION

Let A denote the class of function analytic in U and

f(z):z—i—Zanz" (Z eU) (1.1)

In 1976, Noonam and Thomas [13]| defined the q"* Hankel determinant of f for q
>1landk > 1 as

ay A1 " Qf4g—1
ak—‘rl ) “ e ak+q
Hy(k) =] S : (1.2)
ak+q_1 . e . e ak_2q_2

This determinant has been considered by several authors in the literature.

Second Hankel determinant of really mean p-valent function, Noor [18] deter-
mined the rate of growth of H (k) as k — oo for the function in U with bounded
boundary rotations. Ehrenborg |5| considered the Hankel determinant of exponen-
tial polynomials in ,[17] Layman considered Hankel transform and obtain integrating
properties.
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Also the Hankel determinant has been studied by various authors including Hay-
man [13] and Pommerenke [15]. We observe that Hs(1) is nothing but the classical
Fekete-Szego function.

Jenteng, Halim and Darus 7] have determined the functional |agay — a3| and
found a sharp upper bound for the functions f in the subclass RT of U. Consisting
of functions whoes derivative has a positive real point studied by MacGregar [11].
In this work has shows that if f € RT then |asas — @3] < § in [12]. The authors
obtained the second Hankel determinant and sharp upper bounds for the familiar
subclass namely, starlike and convex function denoted by ST and CV of U and have
shown that |asas — a3| <1 and |asas — a3| < & respectively.

Similarly the same coefficients inequality is calculated the certain subclass of
analytic functions by many authors |2]|8]|10].

Motivated by the result obtained by Sahsene Altinkaya and Sibel Yalcin find the
upper bound for bazilevic function. We obtain an upper bound to the functional
lasay — a3 for the function f given in (1.1),

z)=z+ i a,z"
n=2

z)=z+ i b, 2"
n=2

the Hadamard product (or convolution) of f & g is defined by,

(1.3)

(f*9)( —Z+Zanbz = (g% f)(2) (1.4)

in [3] Catas extended the multlpher and defined the operator,

I+l+An—-1
SIYRINS ;) RSV

()\ZO,ZEO,mENozNU{O};ZEU)

(L1.5)

We note that,

1°(1,0)f(2) = f(2)

belonging to the class namely Starlike function defined as follows,

Definition 1.1. If f € S§*(\, [, 5) denote the class of Bazilevic function, if and only
if,
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1-3 !

Some preliminary lemmas required for proving our results as follows,

2. PRELIMINARY RESULTS
Let p denotes the class of functions consisting of p such that,
p(2) =1+cz+c?+. .. (2.1)

which are regular in the open unit disc U and satisfying R(p(z)) > 0 for any z € U.
Here p(z) is called Caratheodary function [4].

Lemma 2.1 (14). If p € P such that,

lpol > 272  (neN={1,2,...})

and
(2.2)
2 2
Lemma 2.2 (6). If the function p € P then,
2py = pi + x(4 — i)
(2.3)

Aps = p} +2(4 — p3)piz — pr(4 — p})a® + 2(4 — p}) (1 — |z[*2)

for some x,z with |z| < 1 and |z| < 1.

3. MAIN RESULT

Theorem 3.1. Let f given by (1.1) be the class ST*(\, 1, 5) and 0 < § < 1 then,

4(1 — 6)*
|a2a4 - Cl§| < (ﬁ + 2)2(1—}-1l:l2)\)2m (31)

Proof. Let f(z) € SP*(\, 1, §) then their exist an analytic function p € P in the open
unit disc U with p(0) = 1 and R{p(z)} > 0 such that,

3 m !
i) oy )
( - )( o ) =1 o)+ (3.2)

Simplification we get,
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g = (1 - 5)]91
(B + 1)(552)m
e —A=0p (8- D( -9
(B+2)(HER)™  2(8+ 1)2(HE)m
0 — (1—-0)ps (8 —1)(1 —0)’pips

L (B= 18— 11— )%}
6(8 + 1)3 (2 )™

It is easily established that,

(1 —0)°pips B
(B +1)(8 + 3) () (HEA )™
(1 - 5)?’(5 - 1)27%172
(B + 1)2(8 + 2)(HLE2)m (L2 )m
(1-0)"B-1)(28 - )p}

65+ V() (55

oGy — a§| = |

_|_

(B +3)(HER) (8 +1)(8 + 2)(HER)m

( (1—0)ps (58— 1)(1—8)°p?
(

B+2)(HER)m 2B + )(HER)"

1+1 1+1

Applying the Lemma,

(1 _ 5)3])1 [pi’+2(4—10%)171x—p1(4

(B+1)(8 + 3) (2

)z 2+2(4—pf)(1—|x\ZZ)]

P
4
) ( 1+11:l3)\ )m

ﬂ—&%ﬁ—DﬁFﬁ%ﬁﬁ} u—a(ﬁ—meﬁ—mﬁ

)

o] [mp] " 60D TR
(1—0)2[p? + (4 — p?)]? 2@ 1)(1—0)3p [ﬁﬂﬁiﬁ]

4B + 2)2(HER )2 2w+2X6+D(5#%)

(6 —1)*(1 = 0)"p
A3 + 1 (e

Let p1 = p and assume without restrictions p € [0,2] we have,

(3.5)

(3.6)
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_ | (@ =06)°[p* +2(4 — p*)p*x — p?
46+ 1) (B +

(4 —p*)2® +2(4 = p*)p(1 — |]*)]
3)(1+l+3/\)m(1+l+)\)m

( 1+ 1+
0= -D e — ) | (1= 9HE - 15— Ly
205+ 173+ LB * 65+ 1

(L8[ + 24— ) +22(4 — p*)Y (3.8)

408 + 2 (HE )

(B-DA =" +p’2(4-p*)]  (B-1D'1 -9
2(6 +2)(8 + 1)2[FHE2m A(B + 1)2(HER )2

1+

+

If |z| = p and by using triangle inequality we get

_ (=0t +2(4 = p*)pPp — pP(4 — p?)p* + 2(4 — p*)p(1 — |p)]
4B+ 1)(B + 3) () ()

_ A= =D +pp(d—p)] | (1= 9B~ 1)(26 — Lp'

208+ 128+ 2) (B2 [HE2™ - 6(8 + DA (HEER) (K2

_ (A= 0P+ 2% — ) + (4= )] (3.9)

15+ 2P

(B=1)A=00[p* +p*p(4 —p*)]  (B-1)'(1=09)p"
2(8 4 2)(8 + 1)2[ LA m A(B + 1)2(HER )2
= F(p)

with p = |z| < 1 furthermore,

Fip) = 1= 0)*[2p*(4 — p?) — 20p*(4 — p?) + 2(4 — p*)(=2p)]

105+ 1)(5 + 3)(LEEX yn [ LT "
(1— 008 — D[pP(4 - 1)
205+ (5 + DRI R 10
(1—=0)22p*(4 —p*) +2p(4 —p*)?]  (B+1)(1—6)*[p*(4 — p?)]
A(B + 2)2[LEEE2A2m 2(8 + 2)(B + 1)2[ 152 ]2m

and with the elementary calculus, we can shoe that F'(p) > 0 for p > 0 implying

that F is an increasing function and thus the upper bound for (3.6) corresponds p
=1 and p = 0 gives,

4(1 — 0)?
agay — az] < 2+ 3P (LD (3.11)
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0

Corollary 3.1. If 3 =1, m = 0,6 = 0 then f € RT. |asay—a3| < g results consider
with the results Janteng [7].

Corollary 3.2. If B = 0, m = 0, § = 0 then f € S*. |agaq — a2| < 1 results consider
with the results Janteng [8].
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