Common Fixed Point Theorems in Compact Fuzzy 3-Metric Space Using Implicit Relation

Kavita Shrivastava

Department of Mathematics & Statistics, Dr. Harisingh Gour University Sagar, Madhya Pradesh, India

Abstract:

An extensive study in fuzzy metric space, fuzzy 2-metric space,compact fuzzy metric space and compact fuzzy 2-metric space had been done by Sharma [3]and shrivastava[4], using this concept we have generalizing the result of Aliouche [1] in the context of compact fuzzy3-metric space.

Keywords: lass of Implicit Relation, Compact Fuzzy 3- Metric Space. Weak-compatible

Introduction:

Gahlar [2] who furnished the concept of 2-metric space, and this concept has prospered very fast in various directions. It is to be remarked that Sharma, Sharma and Iseki [3] studied for first time contraction type mapping in 2-metric space. Wenzhi [5] and many others preceded the study of probabilisstic 2-metric space. We know that a 2-metric is a real valued function with domain $X \times X \times X$, whose abstract properties were suggested by the area function in Euclidean space. Now it is natural to expect 3-metric space which is suggested by the volume function. Now we generalized the work of shrivastava^[4] in the context of fuzzy 3metric space.

COMMON FIXED POINT THEOREM IN COMPACT FUZZY 3-METRIC SPACE SATISFYING AN IMPLICIT RELATION

Definition 1. The mapping $* : [0, 1] \rightarrow [0, 1]$ is called **t-norm** if

(1) $*(a, 1, 1, 1) = a$ for all $a \in [0,1]$

 $(2) * (a, b, c, d) = * (a, c, d, b) = * (c, d, a, b)$

(3) * (a, b, c, d) \leq * (d, c, f, g); whenever $a \leq d$, $b \leq c$, $c \leq f$ and $d \leq g$

(4)
$$
(*(a, b, c), d, c, f) = *(a, * (b, c, d), e, f)
$$

$$
= * (a, b, * (c, d, e), f) = * (a, b, c, * (d, e, f))
$$

Definition 2. The 3- tuple $(X, M, *)$ is called a **fuzzy 3-metric space** if X is an arbitrary set, $*$ is a continuous t-norm and M is a fuzzy set in X^4 x $[0, \infty)$ satisfying the following conditions, for all x, y, z, w, u $\in X$ and $t_1, t_2, t_3, t_4 > 0$

(1)
$$
M(x, y, z, w, 0) = 0
$$
,

(2)
$$
M(x, y, z, w, t) = 1
$$
; for all $t > 0$, [only when at least two of the four points are equal]

(3)
$$
M(x, y, z, w, t) = M(x, w, z, y) = M(y, z, w, x, t) = M(z, w, x, y, t) = \dots
$$

(4)
$$
M(x, y, z, w, t_1 + t_2 + t_3 + t_4) \ge M(x, y, z, u, t) * M(x, y, u, w_1t_2) *
$$

 $M(x, u, z, w, t_3) * M(u, y, z, w, t_4),$

(3)
$$
M(x, y, z, w, .): [0, \infty) \rightarrow [0, 1]
$$
 is left continuous,

(4) $t\rightarrow\infty$ $\lim M(x, y, z, w, t) = 1.$

The function value $M(x, y, z, w, t)$ may be interpreted as the probability that the volume of tertrahedron is less then t.

Definition 3. Let $(X, M, *)$ be a fuzzy 3-metric space. Then we define an **open ball** with centre $x_0 \in X$ and radius r, $0 < r < 1$, $t > 0$ as

B (x_0 , r, t) = {y, \in X : S(x_0 , y, z, w, t) > 1 – r

Definition 4. Let $(X, M, *)$ be a fuzzy 3-metric space. Define

 $\tau = \{ A \subset X : x \in A \text{ if and only if there exist } t > 0 \text{ and } 0 < r < 1 \}$

such that $B(x_0, r, t) \subset A$.

Then τ is a topology on X.

Definition 5. Let $(X, M, *)$ be fuzzy 3-metric space. Then a collection $C = \{G_{\alpha} : \alpha \in \Lambda \}$; where G_{α} is open sets of X is said to be a **open cover** of X if \bigcup α∈Λ G_{α} ϵ $=$ X.

Definition 6. A fuzzy 3-metric space $(X, M, *)$ is said to be **compact** if every open covering of X has a finite subcovering.

Definition 7. Let $(X, M, *)$ is fuzzy 3-metric space

(1) A sequence $\{x_n\}$ in X is said to be **convergent** to a point $x \in X$, if

 $n \rightarrow \infty$ lim $M(x_n, x, a, b, t) = 1$, for all $a, b \in X$ and $t > 0$.

(2) A sequence {xn} in X is called a **cauchy sequence**, if

 $n \rightarrow \infty$ lim $M(x_{n+p}x_n, a, b, t) = 1$, for all $a, b \in X$ and $t > 0$, $p > 0$.

(3) A fuzzy 3-metric space in which every cauchy sequence is convergent is said to be **complete**.

Definition 8. A function M is **continuous** in fuzzy 3-metric space iff whenever $x_n \to x$, $y_n \to y$, then

$$
\lim_{n\to\infty} M(x_n,y_n,a,b,t)=M(x,y,a,b,t) \ ;
$$

for all a, b, \in X and t > 0.

Definition 9. Two mappings A and S on fuzzy 3-metric space (X, M, *) are **compatible** if

 $n \rightarrow \infty$ lim $M(ASx_n, SAx_n, a, b, t) = 1$; for all $a, b \in X$, $t > 0$.

Whenever, $\{x_n\}$ is a sequence such that

$$
\lim_{n\to\infty}Ax_n=\ \lim_{n\to\infty}Sx_n{=x\in X}.
$$

Definition 10. Self mapping A and S of a fuzzy 3-metric space (X, M, *) are said to be **weak-compatible** if they commute of their coincidence point

Theorem 1. Let A, B, S and T be self mappings of a compact fuzzy 3-metric space $(X, M, *)$ satisfying

(a) $S(X) \subset B(X)$ and $T(X) \subset A(X)$,

(b) the pair (A, S) and (T, B) are weak-compatible,

(c) S and A are continuous,

(d) inequality

 $F [M(Sx, Ty, a, b, t), M(Ax, By, a, b, t), M(Ax, Sx, a, b, t),$

$$
M(By, Ty, a, b, t), M(Ax, Ty, a, b, t), M(Sx, By, a, b, t) \rbrack > 0
$$

 \forall x, y, a, b \in X and F \in F₆ satisfying (C₁), (C₂) and (C₃) for which one of

 $M(Ax, By, a, b, t)$, $M(Ax, Sx, a, b, t)$ and $M(By, Ty, a, b, t)$ is positive.

Then A, B, S and T have a unique common fixed point in X.

Proof. Let $K = \text{Sup } \{M(Ax, Sx, a, b, t) ; b, x, a \in X, t > 0 \}.$

Since X is compact, then there is a convergent sequence $\{x_n\}$ with limit $x_0 \in X$ such that

$$
\lim_{n\to\infty}M(Ax_n,\,Sx_n,\,a,\,b,\,t)=K,\quad\forall\,\,t>0.
$$

Since M(Ax₀, Sx₀, a, b, t) $\geq M(Ax_0, Sx_0, a, Sx_n, 1/16) * M(Ax_0, Sx_0, Sx_n, Ax_n, 1/16) *$

 $M(Ax_0, Sx_n, a, Ax_n, 1/16) * M(Sx_n, Sx_0, a, Ax_n, 1/16) *$

 $M(Ax_0, Sx_0, Sx_n, b, 1/16) * M(Ax_0, Sx_n, Ax_n, b, 1/16) *$

 $M(Sx_n, Sx_0, Ax_n, b, 1/16) * M(Ax_0, Sx_n, a, b, 1/16) *$

 $M(Sx_n, Ax_n, a, b, 1/16) * M(Sx_n, Sx_0, a, b, 1/16)$.

By the continuity of A and S and $\lim x_n = x_0$, we get $n \rightarrow \infty$

 $M(Ax_0, Sx_0, a, b, t) \geq K$, $\forall t > 0$

Hence $M(Ax_0, Sx_0, a, b, t) = K$. [by the definition of K]

Since $S(x) \subset B(x)$, then there exists $v \in X$ such that $Sx_0 = Bv$ and

 $M(Ax_0, By, a, b, t) = K$

We have to prove that $K = 1$, suppose on the contrary that $K \neq 1$ then $K < 1$. Putting $x = x_0$, $y = v$ in (d), we get, $F [M(Sx_0, Tv, a, b, t), M(Ax_0, Bv, a, b, t), M(Ax_0, Sx_0, a, b, t),$

 $M(Bv, Tv, a, b, t), M(Ax_0, Tv, a, b, t), M(Sx_0, Bv, a, b, t) > 0$

 \Rightarrow F [M(Bv, Tv, a, b, t), K, K, M(Bv, Tv, a, b, t), M(Ax₀, Tv, a, b, t), 1] > 0.

By (C_a) , we get

 $M(Bv, Tv, a, b, t) > K$.

Since $T(X) \subset A(X)$ then there exists $u \in X$ such that $Tv = Au$ and

 $M(Au, Bv, a, b, t) > K$, \forall $t > 0$.

Since by the definition of K,

 $M(Au, Su, a, b, t) \leq K > 0.$

Putting $x = u$, $y = v$ in (d), we obtain

 $F [M(Su, Tv, a, b, t), M(Au, Bv, a, b, t), M(Au, Su, a, b, t),$

 $M(Bv, Tv, a, b, t)$, $M(Au, Tv, a, b, t)$, $M(Su, Bv, a, b, t)$ | > 0

 \Rightarrow F [M(Au, Su, a, b, t), M(Bv, Tv, a, b, t), M(Au, Su, a, b, t),

 $M(Bv, Tv, a, b, t), 1, M(Su, Bv, a, b, t) > 0$, $\forall t > 0$.

By (C_b) , we get,

 $K \ge M(Au, Su, a, b, t) > M(Bv, Tv, a, b, t) > K$ which is a contradiction.

Then $K = 1$ which implies that $Ax_0 = Sx_0 = Bv$.

If $M(Bv, Tv, a, b, t) < 1$.

Putting $x = x_0$, $y = v$ in (d), we have

F [$M(Sx_0, Tv, a, b, t)$, $M(Ax_0, Bv, a, b, t)$, $M(Ax_0, Sx_0, a, b, t)$,

 $M(Bv, Tv, a, b, t), M(Ax_0, Tv, a, b, t), M(Sx_0, Bv, a, b, t) > 0$

 \Rightarrow F [M(Bv, Tv, a, b, t), 1, 1, M(Bv, Tv, a, b, t), M(Bv, Tv, a, b, t), 1] > 0

which is a contradiction of (C_3) .

Therefore $M(Bv, Tv, a, b, t) = 1$.

We get $Bv = Tv = Sx_0 = Ax_0 = z$.

Since the pair (S, A) is weak-compatible, then $Az = Sz$

Now, we are going to show that $z = Sz$ i.e. $M(z, Sz, a, b, t) = 1$

Suppose on the contrary that $M(z, Sz, a, b, t) \neq 1$, then $M(z, Sz, a, b, t) < 1$.

Putting $x = z$, $y = v$ in (d), we get

 $F [M(Sz, Tv, a, b, t), M(Az, Bv, a, b, t), M(Az, Sz, a, b, t),$

 $M(Bv, Tv, a, b, t), M(Az, Tv, a, b, t), M(Sz, Bv, a, b, t) > 0$

 \Rightarrow F [M(Sz, z, a, b, t), M(Sz, z, a, b, t), 1, 1, M(Sz, z, a, b, t),

 $M(Sz, z, a, b, t)$ $] > 0$

which is a contradiction of (C_3)

Therefore $z = Sz = Az$. (1)

Again, since the pair (B,T) is weak-compatible, we get $Tz = Bz$. (2)

For showing $z = Tz$, suppose on the contrary that $z \neq Tz$,

then $M(z, Tz, a, t) < 1$. Putting $x = z$, $y = z$ in (d), we have

$$
F [M(Sz, Tz, a, t), M(Az, Bz, a, t), M(Az, Sz, a, t),M(Bz, Tz, a, t), M(Az, Tz, a, t), M(Sz, Bz, a, t)] > 0
$$

\n⇒
$$
F [M(z, Tz, a, t), M(z, Tz, a, t), 1, 1, M(z, Tz, t), M(z, Tz, t)] > 0
$$

\nwhich is a contradiction of (C₃).

Therefore $z = Tz$. (3)

From (1) (2) and (3)

 $z = Bz = Tz = Az = Sz$.

Hence z is a common fixed point of A, B, S and T.

Uniqueness

Let z' be another common fixed point of A, B, S and T i.e. $z' = Az' = Bz' = Sz' = Tz'$ and $M(z, z', a, b) < 1$. By putting $x = z$, $y = z'$ in (d), we have $F [M(Sz, Tz', a, b, t), M(Az, Bz', a, b, t), M(Az, Bz, a, b, t),$ $M(Bz', Tz', a, b, t), M(Az, Tz', a, b, t), M(Sz, Bz', a, b, t) > 0$ \Rightarrow F [M(z, z', a, b, t), M(z, z', a, b, t), 1, 1, M(z, z', a, b, t), $M(z, z', a, b, t)$ $] > 0$ which is a contradiction. Hence $z' = z$.

Hence z is the unique common fixed point of A, B, S and T.

REFRENCES:

- [1] **Aliouche, A.** : A common fixed point theorems for weakly compatible mappings in compact metric spaces satisfying an implicit relation, *Sarajevo Journal of Mathematics 3 (15),* 2007, 123-130.
- [2] **Gähler, S.** : 2-Metrische Räume and ihre topologische structure, *Math*. *Nachr*., *26* 1983, 115-148.
- [3] **Sharma, P.L. Sharma B.K.,** and **Iseki, K.** : Contractive type mapping on 2- Metric space, *Math. Japonica, 21*, 1976, 67-70.
- [4] **Shrivastava, K :** Common fixed point theorems satisfying an implicit relation, International *Journal of Advance Research in Science and Engineering*, 5(8), 2016, 206 - 215
- [5] **Wenzhi, Z.** : Probabilistic 2-metric space, *J. Math. Research Expo., 2*, 1987, 241-245.