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This research investigates the influence of axial force on the transverse displacement and 

rotation of a damped shear beam resting on an elastic foundation and subjected to moving load 

traveling at a constant velocity. The governing equations are coupled second-order partial 

differential equations. To simplify these equations, the finite Fourier series method was 

employed, transforming the coupled second-order partial differential equations into a set of 

coupled second-order ordinary differential equations. The simplified equations that describe the 

motion of the beam-load system were subsequently solved using Laplace transformation in 

conjunction with convolution theory to obtain the solutions. Comprehensive analyses are 

conducted to investigate the effects of axial force on the transverse displacement and rotation 

of damped shear beams of different length sizes when subjected to the moving load traversing 

the beam at different velocities respectively. Additionally, the study examines the effect of axial 

force on the critical velocities of the vibrating system. The findings reveal that the transverse 

displacement and rotation of the beam are noticeably reduced with increasing axial force. It is 

also found that as the value of axial force increases, the critical velocity increases indicating a 

safer dynamical system. From a practical perspective, this clearly indicates that axial force 

significantly enhances the dynamic stability of the beam when subjected to the moving load. 
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I. INTRODUCTION 

In modern structural design and analysis, the vibration 

analysis of elastic structures is a significant area of research 

within structural and mechanical engineering, having been 

extensively examined to understand the dynamic behavior 

of continuous systems. Specifically, the response of elastic 

structures, such as beams subjected to various types of 

moving loads, has garnered considerable interest from 

numerous researchers [1-7]. A fundamental understanding 

of the complex dynamic interactions between structural 

components and the loads acting upon them is crucial, as it 

aids in managing structural vibrations and enhances the 

operational efficiency of such dynamic systems. Moving 

loads can produce substantial vibrations in elastic structures 

they traverse, especially at high speeds. Unlike stationary 

loads or subsystems that produce constant stresses and 

deformations, moving loads result in effects that vary 

according to the load's position, which is characteristically 

time-dependent [8]. As a result, a substantial body of 

literature has been dedicated to addressing moving load 

problems. The vibration response of beams under moving 

loads has been thoroughly investigated in [9-13]. 

Moreover, beams supported by elastic foundations are 

frequently encountered in the analysis of various structures, 

including buildings, geotechnical highways, railway 

systems, and numerous other related structures. The study 

of the vibrations of beam-like structures due to moving loads 

on elastic foundations holds significant technological 

relevance. Notably, Ogunbamike [14] investigated the 

dynamic behavior of a simply supported Timoshenko beam 

resting on a Winkler foundation and subjected to a moving 

uniformly distributed load. Also, Clastornik et al. [15] 

performed a study on the dynamic analysis of elastic beams 

that are supported by a variable Winkler elastic foundation 

In a similar vein, the dynamic response to traveling load of 

elastic structure resting on bi-parametric elastic foundations 

have been extensively studied. Ogunbamike and Oni [16] 

explored the dynamic characteristics of a non-prismatic 

Rayleigh beam with general boundary conditions, supported 

by a Vlasov elastic foundation and subjected to partially 
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distributed moving masses with varying velocities. They 

utilized Generalized Galerkin method to derive closed-form 

solutions for this class of dynamical problems. Rajib et al. 

[17] investigated the dynamic response of a beam when 

under both moving loads and moving masses, supported by 

a Pasternak foundation. Additionally, Jimoh and Awelewa 

[18] investigated the dynamic behavior of a non-uniform 

elastic structure resting on an exponentially decaying 

Vlasov foundation, subjected to repeated rolling 

concentrated loads. 

In the majority of the previously mentioned studies, the 

influence of axial force was not considered; however, such 

effects can have a considerable impact on the dynamic 

response of structures. Thus, engineers commonly introduce 

artificial stresses into structures before applying loads to 

ensure that the stresses experienced during loading are more 

favorable than they would typically be. These artificial 

stresses can exist as forces acting either axially or in various 

other directions. When these forces are aligned axially, they 

are termed axial forces. This technique of inducing artificial 

stresses is referred to as pre-stressing. The main objective of 

pre-stressed structures is to minimize tensile stresses, 

thereby reducing the risk of flexural cracking or bending 

under operational conditions. As a result, extensive research 

has been conducted on the vibrations of pre-stressed beams 

subjected to moving loads. Jimoh, Oni and Ajijola [19] 

examined the effect of variable axial force on the deflection 

of thick beams under a distributed moving load. They 

calculated the transverse displacement for both moving 

force and moving distributed mass models of the dynamic 

problem for various time intervals and conducted an 

analysis. Jimoh, Ogunbamike, and Ajijola [20] explored the 

dynamic response of non-uniformly prestressed thick beams 

under distributed moving load traveling at different 

velocities. They employed a technique based on Galerkin’s 

method, utilizing a series representation of the Heaviside 

function to transform the equations, which were then 

simplified using Struble's asymptotic method and solved 

through Laplace transformation techniques in conjunction 

with convolution theory. Their findings indicated that the 

moving distributed force does not serve as an upper bound 

for accurately solving the moving distributed mass problem. 

Additionally, they discovered that increasing certain 

pertinent structural parameters leads to a reduction in the 

response amplitudes of non-uniformly prestressed thick 

beams under moving distributed loads. Ogunbamike [21] 

also investigated the dynamic response of a Timoshenko 

beam supported by an elastic foundation and subjected to a 

harmonic moving load. 

The theory of shear beams plays a crucial role in structural 

engineering, emphasizing beams where shear deformation is 

significant. In contrast to the conventional Euler-Bernoulli 

beam theory, which presumes that plane sections remain 

unchanged and perpendicular to the neutral axis, shear beam 

theory incorporates shear deformations, thereby proving 

essential for the analysis of short and deep beams. 

It is important to remark at this juncture that extensive 

research has been undertaken on dynamic problems related 

to Bernoulli-Euler beams and various other beam types 

subjected to both lumped and distributed loads [22-25]. 

However, there is a scarcity of research focusing on shear 

beams under moving loads. The literature addressing shear 

beams models remains limited until recently when landmark 

feat was achieved by [26] who studied the dynamic 

behaviour of damped shear beam resting on bi-parametric 

elastic foundation when traversed by moving load travelling 

at constant velocity. Similarly, Ajijola [27] analyzed the 

transverse displacement and rotation of an axially 

prestressed damped shear beam supported by a Vlasov 

foundation when subjected to a moving load.  

Thus, this paper presents the influence of axial force on the 

transverse displacement and rotation of a damped shear 

beam when subjected to moving load travelling at a constant 

velocity. Furthermore, the effect of axial force on the critical 

velocity of a simply supported damped shear beam traversed 

by a moving load is presented in this research. 

 

II. MATHEMATICAL MODEL 

The governing equations of motion describing the 

transverse displacement 𝑉(𝑥, 𝑡) and rotation ɸ(𝑥, 𝑡) of a 

shear beam when subjected to a moving load traveling at a 

constant velocity are formulated as coupled second order 

partial differential equations given by 

 𝑀
𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
 +  

𝜕

𝜕𝑥
[𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡) −

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 )] 

+ 𝐹(𝑥, 𝑡) = 𝑃(𝑥, 𝑡)                                                            (1)  
𝜕

𝜕𝑥
( 𝐸𝐼

𝜕ɸ(𝑥,𝑡)

𝜕𝑥
) − 𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡)  − 

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
 ) = 0.        (2) 

 
where 𝑀 is the mass per unit length of the beam, 𝐾∗ is the 

shear correction factor, 𝐺∗ is the shear parameter of the 

beam, 𝐴 is the cross-sectional area of the beam, 𝐸 is the 

Young modulus of elasticity of the beam material, I is the 

moment of inertia, EI is the flexural stiffness / rigidity, x is 

the spatial coordinate, t is the time coordinate, 𝐹(𝑥, 𝑡) is the 

foundation reaction and 𝑃(𝑥, 𝑡) is the moving load acting 

on the beam per unit length.  

 

The relationship between the foundation reaction 𝐹(𝑥, 𝑡) 

and lateral deflection 𝑉(𝑥, 𝑡) is given by  

 

𝐹(𝑥, 𝑡) = 𝐾𝑉(𝑥, 𝑡) − 𝐺
𝜕2𝑉(𝑥,𝑡)

𝜕𝑥2                                                 (3)                    

where 𝐾 and 𝐺 are two parameters of the foundation model. 

Specifically, 𝐾 is the Foundation Stiffness and 𝐺 is the Shear 

Modulus.  

In this study, it is assumed that the load function 𝑃(𝑥, 𝑡) is 

given in the form 

𝑃(𝑥, 𝑡) = 𝑃0𝛿(𝑥 − 𝑐𝑡).                                                               (4) 

𝛿(·) is the well-known Dirac delta function with the property. 
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∫ 𝜕(𝑥 − 𝑐𝑡)𝑓(𝑥)𝑑𝑥
𝑎

𝑏

= {   0,    𝑓𝑜𝑟  𝑐𝑡 <  𝑎  <   𝑏, 

𝑓(𝑐𝑡), 𝑓𝑜𝑟  𝑎 <  𝑐𝑡 <  𝑏, 1,   𝑓𝑜𝑟   𝑎  <  𝑏 <  𝑐𝑡.             (5) 

It is remarked here that the beam under consideration is 

assumed to have simple support at both ends 𝑥 =  0 and 𝑥 =

 𝐿. Thus, boundary conditions are given as  

𝑉(0, 𝑡) = 𝑉(𝐿, 𝑡) = 0,
𝜕𝑉(0,𝑡)

𝜕𝑥
=

𝜕𝑉(𝐿,𝑡)

𝜕𝑥
= 0                                  

(6) 

       ɸ(0, 𝑡) = ɸ(𝐿, 𝑡) = 0,
𝜕ɸ(0,𝑡)

𝜕𝑥
=

𝜕ɸ(𝐿,𝑡)

𝜕𝑥
= 0                          

(7) 

and the initial conditions are given as      

  𝑉(0, 𝑥) = 0 =
𝜕𝑉(𝑥,0)

𝜕𝑡
,      ɸ(0, 𝑥) =  0 =

𝜕ɸ(𝑥,0)

𝜕𝑡
                 (8) 

Now, introducing damping and axially prestressed 

parameters and in view of (3) and (4) after some  

simplifications and re-arrangements, equation 

 (1) and (2) become 

 

𝜕

𝜕𝑥
[𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡) −

𝜕𝑉(𝑥, 𝑡)

𝜕𝑥
 )]  +  𝑀

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑡2
 

−𝑁0

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
− 𝐶0

𝜕𝑉(𝑥, 𝑡)

𝜕𝑡
 + 𝐾𝑉(𝑥, 𝑡) − 𝐺

𝜕2𝑉(𝑥, 𝑡)

𝜕𝑥2
 

= 𝑃0𝛿(𝑥 − 𝑐𝑡)                                                                          (9) 

 
𝜕

𝜕𝑥
( 𝐸𝐼

𝜕ɸ(𝑥,𝑡)

𝜕𝑥
) − 𝐾∗𝐺∗𝐴 (ɸ(𝑥, 𝑡)  −  

𝜕𝑉(𝑥,𝑡)

𝜕𝑥
 ) = 0          (10) 

Where 𝑁0 is the axial force and  𝐶0 is the coefficient of 

viscous damping per unit length of the beam. 

 

Hence, (9) and (10) are the second order partial differential  

equations governing the flexural motion of an elastically 

supported damped shear beam when subjected to a moving 

load traveling at a constant velocity. 

 

III.      SOLUTION PROCEDURE 

The shear beam examined in this study is both finite and 

uniform. To derive the analytical solution for the initial 

boundary value problem presented in equations (9) and (10), 

we utilize the finite Fourier transformation method in 

conjunction with the Laplace Transform techniques.  

Consequently, we present the following definitions. 

 

Definition 1: The finite Fourier sine transform 𝜔0(𝑛, 𝑡)  

of a function 𝜔(𝑥, 𝑡) is defined as 

𝜔0(𝑛, 𝑡) = ∫ 𝜔(𝑥, 𝑡) 𝑠𝑖𝑛 𝑠𝑖𝑛 
𝑛𝜋𝑥

𝑙
 𝑑𝑥

𝑙

0
                               (11) 

and the inverse transform is 

𝜔(𝑥, 𝑡) =
2

𝑙
∑ 𝜔0(𝑛, 𝑡) 𝑠𝑖𝑛 𝑠𝑖𝑛 

𝑛𝜋𝑥

𝑙
 𝑑𝑥.     ∞

𝑛=1                   (12) 

Definition 2: The finite Fourier cosine transform  𝛾0(𝑛, 𝑡) 

of a function 𝛾(𝑥, 𝑡) is defined as 

     𝛾0(𝑛, 𝑡) = ∫  𝛾(𝑥, 𝑡) 𝑐𝑜𝑠 𝑐𝑜𝑠 
𝑛𝜋𝑥

𝑙
 𝑑𝑥

𝑙

0
                            (13) (12) 

and the inverse transform is 

 𝛾(𝑥, 𝑡) =
2

𝑙
∑  𝛾0(𝑛, 𝑡)𝑐𝑜𝑠 

𝑛𝜋𝑥

𝑙
 𝑑𝑥.  ∞

𝑛=1                            (14)     (13) 

 

Thus, applying (11) and (13) to the governing equations (9) and 

(10) respectively, in conjunction with the Dirac delta function 

property in (5), we obtain     

 

∂2𝑉(𝑛, 𝑡)

∂𝑡2
 + α1

∂𝑉(𝑛, 𝑡)

∂𝑡
+ α2𝑉(𝑛, 𝑡)  − α3

∂ɸ(𝑛, 𝑡)

∂𝑥
 

=  𝑄1 𝑠𝑖𝑛 𝜃𝑛 𝑡                                                                   (15)     

(16) 

 

and 

ɸ(𝑛, 𝑡) =  α0𝑉(𝑛, 𝑡)                                                        (16)     (

1

7

) 

 

where   

α1 = −
𝐶0

𝑀
,   α2 = (

𝑛π

𝑀𝐿
)

2
(𝑁0 + 𝐺) −

𝐾

𝑀
,     

α3 = (
𝑛π

𝑀𝐿
) 𝐾∗𝐺∗𝐴, 

   𝑄1 =  
𝑃0

𝑀
,     𝜃𝑛 =

𝑛𝜋𝑐

𝐿
,     α0 =

𝑛π

𝐿
𝐾∗𝐺∗𝐴

𝐸𝐼(
𝑛π

𝐿
)

2
+ 𝐾∗𝐺∗𝐴

 

Now putting (16) into (15), we have 

 

 

 

∂2𝑉(𝑛, 𝑡)

∂𝑡2
 + α1

∂𝑉(𝑛, 𝑡)

∂𝑡
+ α2𝑉(𝑛, 𝑡) 

−α3
∂

∂𝑥
(α0𝑉(𝑛, 𝑡)) =  𝑄1 𝑠𝑖𝑛 𝜃𝑛 𝑡                                (17)     

 

(18) 

 

The term involving the derivative with respect to 𝑥 in (17)  

vanishes as 𝑉(𝑛, 𝑡) is a function of 𝑡 alone and after some  

simplifications and re-arrangements, we obtain 

 

𝑉𝑡𝑡(𝑛, 𝑡) + α1𝑉𝑡(𝑛, 𝑡) + α4𝑉(𝑛, 𝑡) = 𝑄1 𝑠𝑖𝑛 𝜃𝑛 𝑡         (18) (19

) 

 

where  

α4 = α2 − α0α3 

Next, we subject (18) to Laplace transformation  

  ℒ(𝑓(𝑡)) = F(s) = ∫ 𝑓(𝑡) 𝑒−𝑠𝑡𝑑𝑡
∞ 

0
                               (19) (20) 

 

where 𝑠 is the Laplace parameter. In view of (19), (18)  

becomes 

  𝑠2𝑉̃(𝑛, 𝑠) + α1𝑠𝑉̃(𝑛, 𝑠) + α4𝑉̃(𝑛, 𝑠) = 𝑄1 [
𝜃𝑛

𝑠2+𝜃𝑛
2 ].      (20) (2

1) 

 

After simplification and rearrangement, we obtain the 

 simple algebraic equation given by 

𝑉̃(𝑛, 𝑠) = 𝑄1 [
1

𝑠2+α1𝑠+α4
 ] [

𝜃𝑛

𝑠2+𝜃𝑛
2 ]                                  (21)    (2

2) 

 

which is further simplified to give  

𝑉̃(𝑛, 𝑠) = 𝑄1 [
1

(𝑠+α5)2+𝛽2 ] [
𝜃𝑛

𝑠2+𝜃𝑛
2 ]                                 (22)    (2

3) 

 

Where 

𝛽2 = α4 − (α5)2,    α5 = (
α1

2
) (2

4) 

 

At this juncture, in order to obtain the Laplace inversions  
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of (22), we let 

𝐹(s) = [
1

(𝑠+α5)2+𝛽2 ]                                                         (23)      

 

and 

𝐺(s) = [
𝜃𝑛

𝑠2+𝜃𝑛
2 ]                                                                   (24)     

so that the Laplace inversion of (22) is the convolution of (23) 

and (24) defined by 

𝐹(𝑠) ∗ 𝐺(𝑠) = ∫ 𝑓(𝑡 − 𝑢)𝑔(𝑢)𝑑𝑢
𝑡 

0
.                                (25) (2

5) 

 

Noting that  

ℒ−1[𝐹(s)] =
1

𝑝
 exp  (−α5𝑡) sin(𝛽𝑡)                                (26) (2

6) 

 

and  

ℒ−1[𝐺(s)] = sin(𝜃𝑛𝑡)                                                        (27) 

Now using (23) and (24) in (25), (22) becomes 

 

𝑉(𝑛, 𝑡) =
𝑄1𝑒− α5𝑡

𝛽(𝜑1−𝜑0)(𝜑2−𝜑0)
{𝜑2[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 −

 𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡]  + 𝜑0[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡  + 𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡]  −

 α1𝛽𝜃𝑛[𝑒  α5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 − 𝑐𝑜𝑠 𝛽 𝑡]}                                    (28) 

 

 

where,         

𝜑1 = (𝛽 + 𝜃𝑛)2,   𝜑2 = (𝛽 −  𝜃𝑛)2,   𝜑0 = −(α5)2 

 

Thus, in view of (12), one obtains 

 

 𝑉(𝑥, 𝑡) =
2

𝐿
∑  ∞

𝑛=1
𝑄1𝑒− α5𝑡

𝛽(𝜑1−𝜑0)(𝜑2−𝜑0)
{𝜑2[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 −

 𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡]  + 𝜑0[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 +  𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡]  −

 α1𝛽𝜃𝑛[𝑒  α5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 − 𝑐𝑜𝑠 𝛽 𝑡]}𝑠𝑖𝑛
𝑛π𝑥

𝑙
                       (29) 

 

which represents the transverse displacement of an 

elastically supported damped shear beam when subjected to 

moving load traveling at a constant velocity. 

 

Now, using (28) in (16), we have 

 ɸ(𝑛, 𝑡) =
α0𝑄1𝑒− α5𝑡

𝛽(𝜑1− 𝜑0)(𝜑2−𝜑0)
{𝜑2[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 −

 𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡]  + 𝜑0[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 +  𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡] −

 α1𝛽𝜃𝑛[𝑒  α5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 − 𝑐𝑜𝑠 𝛽 𝑡]}.                                (30) 

(

3

0

) 

 

Similarly, in view of (14), one obtains 

ɸ(𝑥, 𝑡) =  
2

𝐿
∑  ∞

𝑛=1
α0𝑄1𝑒− α5𝑡

𝛽(𝜑1−𝜑0)(𝜑2−𝜑0)
{𝜑2[𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 −

 𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡]  + 𝜑0[𝛽𝑒  α5𝑡 𝑠𝑖𝑛 𝜃𝑛 𝑡 + 𝜃𝑛𝑠𝑖𝑛 𝛽 𝑡] −

 α1𝛽𝜃𝑛[𝑒  α5𝑡 𝑐𝑜𝑠 𝜃𝑛 𝑡 −  𝑐𝑜𝑠 𝛽 𝑡]}𝑐𝑜𝑠
𝑛π𝑥

𝑙
                    (31) 

(

3

1

) 

 

which represents the rotation of an elastically supported 

damped shear beam when subjected to a moving load 

traveling at a constant velocity. 

  

(2

9) 

 

IV. NUMERICAL SIMULATION AND DISCUSSION OF RESULT 

The uniform damped shear beam of lengths (L)  = 8.5m, 

(27

) 

 

10.5m, 12.5m and 14.5m respectively are considered in order 

to illustrate the analysis presented in this study. Similarly, the 

load is assumed to travel along the beam with different 

speeds (c) = 50 m/s, 75 m/s, 100 m/s and 125 m/s 

respectively. The Young modulus of elasticity 𝐸 =

2.10924 × 109𝐾𝑔/𝑚, moment of inertia I = 2.87698×10-3, 

𝜋 =  22/7, the damping coefficient 𝐶𝑜 = 300000 and the 

mass per unit length of the beam 𝑀 =  2758.291𝑘𝑔/𝑚. The 

values of axial force 𝑁 are varied between 

0 𝑁 𝑎𝑛𝑑 3000000 𝑁.    
In this present study, three special cases of effect of axial force 

on dynamic response of a simply supported damped shear 

beam under the action of moving load were investigated. The 

cases are termed; 

1. the effect of axial force N on transverse displacement and 

rotation of a damped shear beam when the lengths of the 

beam (L) are 8.5m, 10.5m, 12.5m and 14.5m respectively, 

2. the effect of axial force N on transverse displacement and 

rotation of a damped shear beam when the load speeds (c) 

are 50 m/s, 75 m/s, 100 m/s and 125 m/s respectively and 

3.  the effect of axial force N on critical velocity. 

 

The transverse displacement V and rotation ɸ of the beam are 

calculated and plotted against time t for various values of axial 

force 𝑁. The results are shown on the various graphs given 

below.  

Figures 1 to 8 describe the transverse displacement and 

rotation of a simply supported damped shear beam under the 

action of moving load travelling at constant velocity for 

various values of axial force N when the lengths of the beam 

(L) are 8.5m, 10.5m, 12.5m and 14.5m respectively and for 

the fixed values of other parameters. It is clearly seen from 

the figures 1 to 8 that as the value of axial force 𝑁 increases, 

the transverse displacement and rotation of the beam 

decrease noticeably. Consequently, increase in the value of 

axial force N stiffens the beam, counteracts the bending 

effect and thus significantly reduces the transverse 

displacement and rotation of the vibrating beam. Hence, the 

presence of axial force N increases the overall rigidity of the 

beam system. 

Similarly, the response amplitude profile of a simply 

supported uniform damped shear beam subjected to moving 

load for various values of axial force N when the load speeds 

(c) are 50 m/s, 75 m/s, 100 m/s and 125 m/s respectively and 

for the fixed values of other parameters are presented in 

Figures 9 to 16. From the graphs, similar result is obtained.  

It is observed that  increase in the value of axial force N 

reduces the transverse displacement and rotation of the 

vibrating beam considerably. In actual practices, this implies 

that as the value of axial force 𝑁 increases, the tensile 

stresses present in the vibrating beam reduce significantly. 

This makes the beam to become more inflexible and stable 

to resist the lateral deflection and intensive vibration, 

allowing it to carry larger transverse loads even at high 
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velocities without buckling. Thus, the likelihood of flexural 

cracking or bending of the beam system is minimized. 

Finally, the effect of axial force N on the critical velocity of 

a simply supported damped shear beam traversed by moving 

load is presented in figure 17. It is evident from the graph 

that for various values of the axial force N and for the fixed 

values of other parameters, the higher the value of the axial 

force N, the higher the critical velocity of the beam. 

Practically speaking, this indicates that increase in the value 

of axial force N makes the beam more unsusceptible to 

buckling and vibrations. It enhances the dynamic stability of 

the beam system, thereby minimizing the risk of resonance 

and ensuring the safety of the structure's occupants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the beam 

length (L) = 10.5 and for fixed values of  𝑲 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

 

       

Figure 4: Rotation of a simply supported damped shear 

beam under the action of moving load for various values 

of N when the beam length (L) = 10.5 and for fixed 

values of  𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 =

𝟑𝟎𝟎𝟎𝟎𝟎. 

      
Figure 5: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the beam 

length (L) = 12.5 and for fixed values of  𝑲 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

Figure 1: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the beam 

length (L) = 8.5 and for fixed values of  𝐊 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎,
𝐆 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝐂𝐨 = 𝟑𝟎𝟎𝟎𝟎𝟎 

 

 

 

 

 

 

Figure 2: Rotation of a simply supported damped shear beam 

under the action of moving load for various values of N when 

the beam length (L) = 8.5 and for fixed values of  𝑲 =
𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 
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Figure 6: Rotation of a simply supported damped shear 

beam under the action of moving load for various values 

of N when the beam length (L) = 12.5 and for fixed 

values of  𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 =

𝟑𝟎𝟎𝟎𝟎𝟎. 

 
Figure 7: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the beam 

length (L) = 14.5 and for fixed values of  𝑲 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎 

 

 
Figure 8: Rotation of a simply supported damped 

shear beam under the action of moving load for 

various values of N when the beam length (L) = 14.5 

and for fixed values of  𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

 

 
Figure 9: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the load 

speed (c) = 50 and for fixed values of  𝑲 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎 

 

     
Figure 10: Rotation of a simply supported damped shear 

beam under the action of moving load for various values 

of N when the load speed (c) = 50 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

 

 
Figure 11: Transverse displacement of a simply supported 

damped shear beam under the action of moving load for 

various values of N when the load speed (c) = 75 and for 

fixed values of  𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 

𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 
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Figure 12: Rotation of a simply supported damped shear 

beam under the action of moving load for various values 

of N when the load speed (c) = 75 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

 

 
Figure 13: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the load 

speed (c) = 100 and for fixed values of  𝐊 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝐆 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝐂𝐨 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

 

 
Figure 14: Rotation of a simply supported damped 

shear beam under the action of moving load for various 

values of N when the load speed (c) = 100 and for fixed 

values of  𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 =

𝟑𝟎𝟎𝟎𝟎𝟎. 

 
Figure 15: Transverse displacement of a simply 

supported damped shear beam under the action of 

moving load for various values of N when the load speed 

(c) = 125 and for fixed values of  𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 =

𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

 

 
Figure 16: Rotation of a simply supported damped shear 

beam under the action of moving load for various values 

of N when the load speed (c) = 125 and for fixed values of 

 𝑲 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎, 𝑮 = 𝟒𝟎𝟎𝟎𝟎𝟎𝟎𝟎  and 𝑪𝒐 = 𝟑𝟎𝟎𝟎𝟎𝟎. 

                

 
Figure 17: Variation of the critical velocity against axial 

 force N 

 

IV.      CONCLUSION 

This paper presents axial force influence on transverse 

displacement and rotation under moving of a damped 

shear beam supported by an elastic foundation. A solution 
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methodology involving finite Fourier transform 

techniques and Laplace transformation, along with 

convolution theory, is employed to obtain the solution for 

the coupled second-order partial differential equations 

that characterize the motion of the beam-load system. 

Thorough analyses are performed to explore the influence 

of axial force on the transverse displacement and rotation 

of damped shear beams of different length sizes when 

subjected to a moving load traversing at different 

velocities. Furthermore, the research investigates how 

axial force influences the critical velocities of the 

vibrating system. The plotted graphs distinctly 

demonstrate that axial force considerably improves the 

stability of the beam under the moving load. The results 

indicate that both the transverse displacement and rotation 

of the beam decrease significantly as axial force increases. 

Additionally, it is observed that higher axial force values 

correspond to increased critical velocities, suggesting a 

more secure dynamic system. Consequently, in the design 

of engineering structures such as bridges, pipelines, 

railway tracks, aerospace components, railway bridges, 

overhead cranes, cableways and tunnels, the profound 

impact of axial force on the critical velocity and dynamic 

stability of the structures should be put into considerations 

to guarantee the safety, reliability and efficiency of the 

design. 
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