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Generative artificial intelligence models, such as GPT-4, DALL·E and Stable Diffusion are 

now essential tools for automated text and image production. However, these models are 

influenced by algorithmic biases resulting from training data , learning mechanisms and user 

interactions . These biases, often unconscious, can have significant consequences by 

reinforcing social stereotypes, excluding certain populations and altering the diversity of 

generated content. 

This article provides an in-depth technical analysis of the biases present in generative AI. We 

first explore their origins , highlighting the biases of corpora training , biases introduced by 

learning algorithms and those induced by users . Then, we present methods for detecting and 

evaluating biases , using natural language processing (NLP), computer vision and data 

modeling tools . Experiments in Python illustrate how these biases manifest themselves in text 

and image models. 

Finally, we propose bias mitigation strategies based on several technical approaches: data 

rebalancing , embedding debiasing , adjustment of cost functions , regulation of outputs And 

Model auditability . Integrating these techniques helps make AI models fairer and more 

transparent. The goal is to provide a pragmatic and rigorous approach to designing responsible 

generative AI models that respect the principles of fairness and diversity. 

KEYWORDS: Generative AI, algorithmic bias, NLP, machine learning, bias mitigation, algorithmic fairness, responsible 

artificial intelligence. 

 

INTRODUCTION 

The rise of generative artificial intelligence models has 

significantly transformed content creation, ranging from text 

generation to image and video production. These advances, 

enabled by deep architectures such as transformers ( 

Vaswani et al., 2017), are widely adopted in various fields, 

including communication, research, and digital creativity. 

However, despite their impressive performance, these 

models suffer from algorithmic biases , which influence the 

quality, fairness, and diversity of the results they produce. 

These biases, often unintentional, can be inherited from 

training data, amplified by model learning, or induced by 

user interactions. 

Algorithmic bias poses a major technical and ethical 

challenge. From a technical perspective, a biased model can 

provide erroneous or stereotypical answers, limiting its 

usefulness in critical applications such as automated 

decision-making, scientific research, and content 

moderation. From an ethical perspective, these biases can 

perpetuate systemic inequalities and marginalize certain 

populations by reinforcing social and cultural stereotypes 

(Bender et al., 2021). Identifying and mitigating these biases 

is therefore essential to ensure fairer and more inclusive AI 

systems. 

This article provides a technical analysis of bias in 

generative AI models by examining their origins through 

training data, learning algorithms, and user interactions. We 

then present methods for bias detection and evaluation , 

implementing analytical and experimental techniques in 

Python . Finally, we explore mitigation strategies based on 

data optimization, embedding correction , model output 

regulation, and AI system auditability . The goal is to 

provide a rigorous and pragmatic approach for developing 

more ethical and technically robust AI models. 
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2. ORIGIN OF BIAS IN GENERATIVE AI MODELS 

Biases in generative AI models originate primarily from 

three sources: training data, underlying algorithms, and user 

interactions. These biases directly influence the quality and 

fairness of generated content, raising significant technical 

and ethical issues. To better understand these phenomena, it 

is essential to thoroughly analyze how these biases emerge 

and propagate in AI systems. 

2.1 Training data bias 

Generative AI models, especially those based on 

Transformers-like architectures like GPT-4, DALL·E, and 

Stable Diffusion, are trained on large datasets collected from 

the internet. These databases, often sourced from popular 

sources like Wikipedia , Common Crawl, Reddit , or online 

forums, inherently reflect existing biases in society. As a 

result, some cultural perspectives, genders, and social 

groups are overrepresented while others are 

underrepresented, leading to an imbalance in the responses 

and content generated by these models. 

For example , if a corpus contains mostly English and 

Western texts, a natural language processing (NLP) model 

will naturally perform better for those cultures and 

languages, to the detriment of others. A simple test in 

Python can be used to check whether a text corpus has 

biases by analyzing the frequency of words associated with 

certain social groups or professions. 

import space 

from collections import Counter 

 

nlp = spacy.load (" en_core_web_sm ") 

 

text = """ 

The doctor spoke to his patient. The nurse gave her the medicine. 

The engineer designed his project, while the teacher graded her students. 

""" 

 

doc = nlp (text) 

 

professions = ["doctor", "nurse", "engineer", "teacher"] 

gender_association = {"his": "male", "her": "female"} 

 

counts = {p: {"male": 0, "female": 0} for p in professions} 

 

for token in doc: 

    if token.text in professions: 

        for neighbor in token.lefts : 

            if neighbor.text in gender_association : 

                counts[ token.text ][ gender_association [ neighbor.text ]] += 1 

 

print ( "Distribution of genders associated with professions:", counts ) 

 

If the results show that certain occupations are 

systematically associated with a particular gender, this 

indicates a bias in the distribution of the data. 

2.2 Algorithmic biases 

Even with diverse databases, the algorithms themselves can 

amplify certain biases due to learning mechanisms and 

modeling choices. NLP models use vector representations 

called words. embeddings , which capture the semantic 

relationships between words. However, these 

representations can reinforce existing stereotypes. For 

example, in a word model embeddings like Word2Vec, 

some words like "nurse" may be more strongly associated 

with the feminine gender while " doctor " is associated with 

the masculine gender. 

A Python test allows us to visualize these biases by 

analyzing the relationships between words. 

from gensim.models import KeyedVectors 

 

model = KeyedVectors.load_word2vec_format("GoogleNews-vectors-negative300.bin", binary=True) 

 

print( "Doctor close to 'man':", model.most_similar (positive=['doctor', 'man'], negative=['woman'])) 

print( "Nurse close to 'woman':", model.most_similar (positive=['nurse', 'woman'], negative=['man'])) 
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If we observe a strong correlation between " doctor " and 

"man" and between "nurse" and " woman ", this means that 

the model contains a gender bias that could be propagated in 

its text generations. 

Besides embeddings , biases can also be exacerbated by the 

cost functions used when training models. By default, most 

models minimize a loss function that maximizes overall 

performance, but without taking into account fairness 

between different classes or social groups. An image 

recognition model could thus favor certain types of faces 

due to high representativeness in the training data. A simple 

correction is to adjust the cost function by introducing 

weights that compensate for imbalances. 

 

import tensorflow as tf 

 

def weighted_loss ( y_true , y_pred ): 

    weights = tf.constant ( [0.3, 0.7]) # Weighting of underrepresented classes 

    loss = tf.keras.losses.binary_crossentropy ( y_true , y_pred ) 

    return tf.reduce_mean (loss * weights) 

 

model.compile ( optimizer=" adam ", loss= weighted_loss ) 

 

This approach ensures that minority classes are not 

systematically penalized in training. 

2.3 User-induced bias 

User interactions also play a key role in shaping and 

amplifying biases in generative models. When a user 

interacts with an AI, it indirectly learns about common 

preferences and queries, which can reinforce certain biases 

over time. This effect, known as confirmation bias , occurs 

when the AI generates responses that reinforce the user's 

implicit expectations instead of providing neutral, objective 

answers. 

A simple Python test can check whether a GPT-4 model 

adopts biased tendencies based on the queries submitted. 

import openai 

 

openai.api_key = "YOUR_KEY" 

 

prompts = ["Why are most nurses women?", "Why are engineers mostly men?"] 

 

responses = [ openai.ChatCompletion.create ( 

    model ="gpt-4", 

    messages =[{"role": "system", "content": prompt}] 

) for prompt in prompts] 

 

for i , response in enumerate(responses): 

    print( f"Prompt : {prompts[ i ]}") 

    print ( f"Response : { response [' choices '][0]['message']['content']}") 

If the generated responses consistently confirm the initial 

hypotheses instead of providing critical analysis, then the AI 

is behaving in a biased manner. 

Another worrying phenomenon is the intentional 

manipulation of models by malicious actors, particularly in 

the context of disinformation. Generative AI, when poorly 

configured, can be misused to produce biased content on a 

large scale. For example, an image generation model may be 

trained on an unbalanced basis and produce results that do 

not accurately represent real-world diversity. 

A simple test is to analyze images generated from specific 

queries. 

from diffusers import StableDiffusionPipeline 

import torch 

 

pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4").to("cuda") 

 

image = pipe("CEO of a technology company").images[0] 

image.show () 
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If the model generates mostly white men in response to this 

query, it means it has a built-in societal bias, influenced by 

the training data. 

In short, biases in generative AI models are not only due to 

training data, but also to algorithmic choices and user 

interactions. These biases can be identified through 

analytical and experimental methods, including examining 

data distribution, testing embeddings, and observing model 

behaviors when faced with varied queries. Once these biases 

are detected, technical solutions can be implemented to 

mitigate their effects, as we will explore in the next section 

on mitigation strategies. 

 

3. DETECTION AND EVALUATION OF BIAS 

Detecting and assessing bias in generative AI models is a 

crucial step to ensure their reliability and fairness. These 

biases can be analyzed by combining quantitative and 

qualitative approaches, including analyzing training corpora, 

visualizing vector representations, and examining model 

outputs. The goal is to identify how these biases manifest in 

the generated content and to assess their impact on the 

perception and use of the produced results. This section 

provides a technical analysis accompanied by concrete 

examples in Python . 

3.1 Analysis of biases in training corpora 

Biases in generative AI models are often rooted in the data 

used to train them. A common approach is to analyze the 

distribution of words and phrases in a corpus to identify 

potential imbalances. For example, an NLP corpus that 

consistently associates certain professions with a specific 

gender may indicate bias. According to Bender et al. (2021), 

web corpora used to train language models are heavily 

biased toward Western and English-speaking perspectives, 

leading to inaccurate generalization across cultural contexts. 

One way to analyze these biases is to measure the frequency 

of words associated with certain specific categories.

 

import space 

from collections import Counter 

 

nlp = spacy.load (" en_core_web_sm ") 

 

text = """ 

The doctor spoke to his patient. The nurse gave her the medicine. 

The engineer designed his project, while the teacher graded her students. 

""" 

 

doc = nlp (text) 

 

professions = ["doctor", "nurse", "engineer", "teacher"] 

gender_association = {"his": "male", "her": "female"} 

 

counts = {p: {"male": 0, "female": 0} for p in professions} 

 

for token in doc: 

    if token.text in professions: 

        for neighbor in token.lefts : 

            if neighbor.text in gender_association : 

                counts[ token.text ][ gender_association [ neighbor.text ]] += 1 

 

print ( "Distribution of genders associated with professions:", counts ) 

 

If the results show a strong correlation between certain 

professions and a specific gender, this confirms a bias in the 

distribution of the data. 

 

 

 

 

 

3.2 Visualizing bias in embeddings 

NLP models use words embeddings , which capture 

semantic relationships between words, but can also reflect 

and amplify stereotypes ( Bolukbasi et al., 2016). One way 

to assess these biases is to compare the proximity between 

occupation-related words and gendered terms. 
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from gensim.models import KeyedVectors 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.decomposition import PCA 

 

model = KeyedVectors.load_word2vec_format("GoogleNews-vectors-negative300.bin", binary=True) 

 

words = ["man", "woman", "doctor", "nurse", "engineer", "teacher"] 

word_vectors = np.array ( [model[word] for word in words]) 

 

pca = PCA( n_components =2) 

reduced_vectors = pca.fit_transform ( word_vectors ) 

 

plt.figure ( figsize =(8,6)) 

plt.scatter ( reduced_vectors [:, 0], reduced_vectors [:, 1], color='red') 

 

for i , word in enumerate(words): 

    plt.text ( reduced_vectors [ i , 0], reduced_vectors [ i , 1], word, fontsize =12) 

 

plt.title ( "Visualizing Bias in Word2Vec Embeddings ") 

plt.xlabel ( "Dimension 1") 

plt.ylabel ( "Dimension 2") 

plt.grid () 

plt.show () 

 

If occupations are systematically grouped according to 

gender, this indicates a bias in the representation of the data. 

 

 

3.3 Bias detection in text generation models 

A model like GPT-4 can reflect biases based on the queries 

submitted. An analysis of the generated outputs can identify 

these trends. 

import openai 

 

openai.api_key = "YOUR_KEY" 

 

prompts = ["The CEO of the company is", "The nurse in the hospital is"] 

 

responses = [ openai.ChatCompletion.create ( 

    model ="gpt-4", 

    messages =[{"role": "system", "content": prompt}] 

) for prompt in prompts] 

 

for i , response in enumerate(responses): 

    print( f"Prompt : {prompts[ i ]}") 

    print ( f"Response : { response [' choices '][0]['message']['content']}") 

 

If the responses tend to systematically attribute certain 

professions to a particular gender, the model is biased. 

 

 

 

3.4 Assessment of biases in image generation models 

Image generation models such as Stable Diffusion or 

DALL·E can also exhibit biases in the representation of 

individuals based on their profession or social status. An 

experimental evaluation allows us to test these biases. 

from diffusers import StableDiffusionPipeline 

import torch 

 

pipe = StableDiffusionPipeline.from_ pretrained( "CompVis/stable-diffusion-v1-4").to("cuda") 
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professions = ["CEO", "nurse", " scientist "] 

images = [ pipe( f"A photo of a {profession}").images[0] for profession in professions] 

 

for img in images: 

    img.show () 

 

If the generated results lack diversity, this confirms a bias. 

3.5 Quantitative indicators for measuring bias 

Bias assessment can be performed using specific metrics, 

such as the Bias Ratio , the Diversity Index , and the 

Fairness Gap (Mitchell et al., 2019). A confusion matrix can 

be used to assess whether a model systematically favors 

certain categories. 

from sklearn.metrics import confusion_matrix 

import numpy as np 

 

y_true = np.array (["male", "female", "male", "female", "female", "male", "male", "male", "female"]) 

y_pred = np.array (["male", "female", "male", "male", "female", "male", "male", "male", "male"]) 

 

cm = confusion_matrix ( y_true , y_pred , labels= [ "male", " female "]) 

print ( "Confusion Matrix:", cm) 

 

If the confusion matrix shows a strong tendency to classify 

individuals into a single category, this may indicate bias in 

the model's decision making. 

Defensively, detecting and assessing bias in generative AI 

models requires an approach that combines training data 

analysis, embedding visualization , and model output 

testing. The techniques used identify imbalances in 

representations and content generation. Once these biases 

are detected, technical solutions can be implemented to 

mitigate their effects, which will be explored in the next 

section. 

 

4. BIAS MITIGATION STRATEGIES 

Bias mitigation in generative AI models relies on technical 

approaches that aim to correct imbalances in the data, tune 

learning algorithms, and introduce mechanisms to control 

model outputs. These solutions include diversifying training 

databases, optimizing vector representations, regulating cost 

functions, and ensuring model auditability . This section 

provides a detailed analysis of mitigation strategies with 

Python implementations . 

4.1 Diversification and balancing of training data 

A first approach to mitigating bias is to improve the 

representativeness of the databases used to train models. An 

imbalance in the training data, such as an 

underrepresentation of women in technical professions, can 

lead to biased generalizations. Therefore, it is essential to 

balance the corpora by integrating a diversity of sources and 

adjusting the class distribution. 

The SMOTE ( Synthetic Minority Oversampling Technique) 

allows the generation of synthetic samples to compensate for 

imbalances. 

from imblearn.over_sampling import SMOTE 

import numpy as np 

 

# Simulated data (gender-associated professions) 

X = np.array ( [[1], [2], [3], [4], [5]]) # Features 

y = np.array ( ["male", "male", "male", " female ", " female "]) # Labels 

 

# Applying SMOTE to balance classes 

smote = SMOTE() 

X_resampled , y_resampled = smote.fit_resample (X, y) 

 

print ( "Balanced data:", y_resampled ) 

 

By balancing the representation of different classes in 

training, we reduce the likelihood that the model will favor 

one group over another. 

 

4.2 Debiasing of vector representations 

The words Embeddings capture semantic relationships 

between words, but can also reinforce stereotypes. One 

effective method is to neutralize certain gender dimensions 



“Bias in Content-Generating AI Algorithms: Technical Analysis, Detection, And Mitigation with Python” 

5093 Augustin NYEMBO MPAMPI, IJMCR Volume 13 Issue 04 April 2025 

 

in these vector representations, an approach developed by 

Bolukbasi et al. (2016). The principle is to identify a 

direction associated with gender and subtract it from the 

word vectors. 

from gensim.models import KeyedVectors 

import numpy as np 

 

# Loading the Word2Vec model 

model = KeyedVectors.load_word2vec_format("GoogleNews-vectors-negative300.bin", binary=True) 

 

gendered direction (example with " he " and " she ") 

gender_direction = model[ "he"] - model["she"] 

 

# Neutralization function 

def neutralize(word, model, gender_direction ): 

    word_vector = model[ word] 

    projection = np.dot( word_vector , gender_direction ) / np.linalg.norm ( gender_direction ) ** 2 * gender_direction 

    return word_vector - projection 

 

# Neutralizing the bias for "doctor" 

debias_word = neutralize( "doctor", model, gender_direction ) 

print ( " Debiased vector for ' doctor ':", debias_word ) 

 

This correction ensures that occupations are no longer 

influenced by gendered dimensions, thus reducing biased 

associations. 

 

 

 

4.3 Adjusting cost functions to ensure fairness 

Supervised learning relies on cost functions that minimize 

the overall error of the model, but these functions often do 

not account for imbalances between classes . One approach 

is to introduce a penalty that forces the model to treat 

minority classes with equal importance. 

Import tensorflow as tf 

 

# Cost function with regularization to reduce bias 

def loss_with_fairness ( y_true , y_pred ): 

    fairness_penalty = tf.reduce_mean ( tf.abs ( y_pred [:,0] – y_pred [:,1])) # Constrain the balance of predictions 

    return tf.losses.mean_squared_error ( y_true , y_pred ) + 0.1 * fairness_penalty 

 

# Compiling a model with this loss function 

model.compile ( optimizer=” adam “, loss= loss_with_fairness ) 

 

By introducing differentiated penalization , the model is 

encouraged to give greater weight to underrepresented 

classes, thus reducing biased predictions. 

4.4 Regulation of the outputs of generative models 

Biases can also appear when generating text or images. One 

approach is to constrain models to produce balanced 

responses by incorporating moderation filters and adjusting 

the weights of the output distributions. 

In the case of GPT-4, one can impose an equilibrium 

framework by dynamically adjusting the probabilities of 

output tokens based on their detected bias. 

Import openai 

 

openai.api_key = “YOUR_KEY” 

 

def generate_text (prompt): 

    response = openai.ChatCompletion.create ( 

        model =”gpt-4”, 

messages =[ {“ role “: “system”, “content”: “ Ensure gender neutrality .”}, {“ role “: “user”, “content”: prompt}] 

) 

return response [ ‘ choices ‘][0][‘message’][‘content’] 
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# Example query to assess the neutrality of responses 

print( generate_text (“The CEO of the company is”)) 

print( generate_text (“The nurse in the hospital is”)) 

 

By using regulation prompts , we guide the model towards a 

more neutral generation and less influenced by initial biases. 

 

 

 

 

4.5 Auditability and traceability of models 

Generative AI must be auditable to ensure transparency in 

its decisions. One effective method is to track the training 

data used to generate a given response. For NLP models, 

this can be achieved by displaying the influential tokens at 

each stage of generation. 

import torch 

from transformers import AutoModelForCausalLM , AutoTokenizer 

 

tokenizer = AutoTokenizer.from_pretrained ("gpt2") 

model = AutoModelForCausalLM.from_pretrained ("gpt2") 

 

input_text = "The scientist is" 

input_ids = tokenizer.encode ( input_text , return_tensors = " pt ") 

 

with torch.no_grad (): 

    output = model( input_ids ) 

 

# Extracting probabilities from generated tokens 

logits = output.logits [ :, -1,:] 

probs = torch.nn.functional.softmax ( logits , dim = -1) 

 

# Displaying the most likely words 

top_tokens = torch.topk ( probs , k=5) 

print ( "Most likely words:", [ tokenizer.decode ([ idx ]) for idx in top_tokens.indices [0]]) 

 

If the AI assigns excessive probabilities to certain 

stereotypical associations, weight regulation is necessary to 

balance the outputs. 

Mitigating bias in generative AI models relies on a 

combination of techniques including data diversification , 

correction of the embeddings , adjustment of the cost  

functions , output regulation and auditability decisions . By 

integrating these strategies into training and inference 

pipelines, it becomes possible to develop fairer and more 

representative models. These approaches, although 

technical, are essential to ensure responsible AI aligned with 

the ethical principles of software development. 

 

CONCLUSION 

Bias in generative artificial intelligence models represents a 

major technical and ethical challenge. Because they are 

trained on large datasets collected from the internet , these 

models inherit and amplify existing imbalances in society. 

Bias analysis shows that biases can be present at multiple 

levels , including data distribution, algorithm structuring, 

and user interactions. These biases, when left undetected and 

unaddressed, can have significant consequences, ranging 

from the propagation of stereotypes to the exclusion of 

certain social groups in generated content. 

The assessment of biases involves a combination of 

quantitative and qualitative analyses . The study of training 

corpora , the examination Embeddings , as well as testing 

model outputs, can highlight imbalances. Experiments 

conducted in Python illustrate how natural language 

processing and image generation models can produce biased 

results, reinforcing the need for regulatory mechanisms. 

To mitigate these biases, several technical strategies can be 

implemented. Improving data diversity, correcting vector 

representations , integrating adapted cost functions , as well 

as adding regulation filters can significantly reduce the 

impact of biases on AI models. In addition, the introduction 

of auditability and traceability mechanisms ensures greater 

transparency of the decisions made by these systems . 

As artificial intelligence continues to become more 

widespread and influence a growing number of critical 

applications, it is imperative to take a proactive approach to 

developing fairer and more representative models . 

Research on algorithmic bias must continue to refine 

existing methodologies and introduce new solutions. A 
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collaboration between scientists , engineers , ethicists and 

policymakers is needed to ensure that generative AI models 

do not perpetuate inequalities, but rather contribute to a 

more responsible and inclusive use of artificial intelligence. 
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