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Group theory has significantly advanced the study of algebraic structures by examining 

examples that satisfy group axioms and by introducing modifications to define new types of 

groups. This research focuses on the algebraic structures formed by sets of nilpotent matrices 

and idempotent matrices. The first part investigates the set of nilpotent matrices under matrix 

multiplication, denoted as (𝑁,∙), analyzing its compliance with group properties. The second 

part explores the algebraic structure of idempotent matrices with multiplication as the operation, 

represented as (𝐴,∙). Through rigorous examination of closure, associativity, identity elements, 

and inverses within these sets, this study reveals that while (𝑁,∙) forms a semigroup due to lack 

of identity and inverses, (𝐴,∙) constitutes a monoid but not necessarily a group because some 

elements lack inverses. Additionally, intersections and unions between these sets are discussed 

to highlight their structural properties. These findings contribute to a deeper understanding of 

matrix-based algebraic systems and provide groundwork for further exploration in abstract 

algebra. 
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I. INTRODUCTION 

Algebraic structures play a fundamental role in modern 

mathematics, providing a framework to study sets equipped 

with operations that satisfy specific axioms [1], [2]. Among 

these structures, groups, semigroups, and monoids have been 

extensively studied due to their wide-ranging applications in 

various fields such as physics, computer science, and 

engineering [3], [4]. In particular, matrix theory offers rich 

examples of algebraic structures where the operation is 

typically matrix multiplication [5], [6]. 

Nilpotent and idempotent matrices are two important 

classes of matrices with distinctive algebraic properties [7], 

[8]. A nilpotent matrix is one that becomes the zero matrix 

when raised to some positive integer power, while an 

idempotent matrix remains unchanged when squared [9]. 

These special types of matrices not only appear naturally in 

linear algebra but also have significant implications in ring 

theory and module theory [10], [11]. 

This paper aims to explore the algebraic structures formed 

by sets of nilpotent and idempotent matrices under the 

operation of matrix multiplication. We investigate three main 

aspects: first, the structure of nilpotent matrices as an algebraic 

system; second, the structure formed by idempotent matrices; 

and third, the combined structure arising from their union. 

Additionally, we seek examples where these sets exhibit group 

properties—particularly focusing on cases where they form 

Abelian groups. 

By understanding these structures more deeply, this 

research contributes to expanding knowledge on how classical 

concepts like nilpotency and idempotency interact within 

group theory frameworks and opens pathways for further 

exploration into new types of algebraic systems derived from 

matrix operations. 

 

II. THEORETICAL REVIEW 

The discussion of nilpotent and idempotent matrix groups 

naturally involves the binary operation “ ∙ ”, which in this 

context refers to matrix multiplication. Specifically, for 

nilpotent and idempotent matrices, the focus is exclusively on 

square matrices of size 𝑛 × 𝑛. 

A. Definition of Nilpotent Matrices 

Definition 2.1 In linear algebra, a nilpotent matrix is defined 

as a square matrix N such that 

𝑁𝑘 = 𝟎 

for some positive integer k. The smallest such integer k is 

called the index or degree of the nilpotent matrix 𝑁 [12], [13]. 

Examples of Nilpotent Matrices: 

https://doi.org/10.47191/ijmcr/v13i4.16
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1. The matrix 𝐴 = [
0 1
0 0

] is nilpotent with index 2, 

since 𝐴2 = 0. 

2. More generally, any 𝑛 × 𝑛 strictly upper (or lower) 

triangular matrix with zeros along its main diagonal 

is nilpotent with an index less than or equal to 𝑛. For 

example, consider the matrix 

𝐵 = [

0 2
0 0

1 6
1 2

0 0
0 0

0 3
0 0

] 

(where the full dimension and entries are specified 

accordingly) 

𝐵 is a nilpotent matrix because its powers satisfy: 

𝐵2 = [

0 0
0 0

2 7
0 3

0 0
0 0

0 0
0 0

] 

𝐵3 = [

0 0
0 0

0 6
0 0

0 0
0 0

0 0
0 0

] 

𝐵4 = [

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

] 

and thus the index of 𝐵 is equal to 4. 

Nilpotent matrices play a significant role in various fields 

of mathematics and their applications, such as spectral theory, 

Jordan decomposition, and the analysis of linear dynamical 

systems [14], [15]. 

Due to their unique property—namely, that repeated 

multiplication eventually results in the zero matrix—

nilpotent matrices are often used to simplify complex 

problems and to understand the long-term behavior of 

systems [16]. 

B. Definition of Idempotent Matrices 

Definition 2.2 An idempotent matrix is a matrix that, when 

multiplied by itself, yields itself. Formally, a matrix A is 

idempotent if and only if  

𝐴2 = 𝐴 

For the product 𝐴2 to be defined, A must be a square 

matrix. Viewed in this way, an idempotent matrix is an 

idempotent element within the ring of matrices. 

Examples of Idempotent Matrices: 

• Examples of 2 × 2 idempotent matrices include: 

[
1 0
0 1

] , [
3 −6
1 −2

] 

• Examples of 3 × 3 idempotent matrices include: 

[
1 0 0
0 1 0
0 0 1

] , [
2 −2 −4

−1 3 4
1 −2 −3

] 

 

Idempotent matrices play a significant role in various areas 

of mathematics and applied sciences [17], [18]. They are 

closely related to projection operators in linear algebra and 

functional analysis because they represent transformations 

that leave their image invariant after one application [14], 

[15], [19]. In ring theory, studying the properties and 

behavior of these elements helps understand decompositions 

and factorization within rings. 

Moreover, understanding the algebraic structure formed by 

sets of idempotent matrices under multiplication provides 

insight into semigroup theory and monoid structures since 

these sets often satisfy closure properties but may lack 

invertibility required for group structures. 

This paper further investigates how these unique properties 

influence combined algebraic systems involving both 

nilpotent and idempotent matrices. 

C. Algebraic Structure of Groups 

Definition 2.3 A group is defined as a set 𝐺 combined with a 

binary operation ∗ that satisfies the following group axioms 

[1]: 

1. Closure Property 

For every element 𝑎 and 𝑏 in 𝐺, the result of the 

operation 𝑎 ∗ 𝑏 must also be an element of 𝐺. If a 

structure (𝐺,∗) only fulfills this closure property, it is 

called a Groupoid. 

2. Associativity 

For all elements 𝑎, 𝑏, and 𝑐 in the set 𝐺, the equation 

(𝑎 ∗ 𝑏) ∗ 𝑐 =  𝑎 ∗ (𝑏 ∗ 𝑐) holds true. When (𝐺,∗) 

satisfies both closure and associativity properties 

exclusively, it forms what is known as a Semigroup. 

3. Existence of Identity Element 

There exists an element 𝑒 ∈ 𝐺, such that for any 𝑎 ∈

𝐺, performing 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎. It can be proven that 

within any group there is exactly one identity element. 

If (𝐺,∗) meets closure, associativity, and has an 

identity element only, then it constitutes a Monoid. 

4. Existence of Inverse Elements 

For each 𝑎 in 𝐺, there exists an inverse element 𝑎−1 ∈

𝐺, satisfying 𝑎 ∗ 𝑎 − 1 = 𝑎 − 1 ∗ 𝑎 = 𝑒, where e 

denotes the identity element. It can also be 

demonstrated that every member in 𝐺 has exactly one 

inverse counterpart. When all four axioms above are 

fulfilled by (𝐺,∗), this structure qualifies as a Group. 

5. Commutativity (Specific to Abelian Groups) 

If for every pair of elements 𝑎, 𝑏 ∈ 𝐺, the operation 

satisfies commutativity: 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎. Then if (𝐺,∗ ) 

is commutative along with fulfilling previous axioms, 

it forms what is called an Abelian Group. 

 

III. RESULTS AND DISSCUSSION 

This section presents the detailed analysis and findings 

regarding the algebraic structures of specific matrix sets 

under multiplication. The focus is primarily on nilpotent 

matrices, exploring their behavior in relation to fundamental 

group axioms. By systematically examining properties such 

as closure, associativity, identity elements, and inverses 

within these sets, we aim to clarify the nature of their 

algebraic frameworks. The results provide insight into 

whether these matrix collections form groups, semigroups, or 

other algebraic structures. 
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A. Algebraic Structure of Nilpotent Matrices 

Consider the pair (𝑁,⋅), where 𝑁 denotes the set of nilpotent 

matrices and “ ∙ " represents matrix multiplication. We will 

examine this structure against the four group axioms as 

follows: 

1. Closure 

Take any matrices 𝐴, 𝐵 ∈ 𝑁, where 𝐴 has 

nilpotency index 𝑘1 and 𝐵 has index 𝑘2. The 

product 𝐴 ⋅ 𝐵 is also a nilpotent matrix with an index 

equal to the least common multiple (𝐿𝐶𝑀) 

of 𝑘1 and 𝑘2. This can be shown by: 

(𝐴 ⋅ 𝐵)𝐿𝐶𝑀(𝑘1,𝑘2) = 𝐴𝐿𝐶𝑀(𝑘1,𝑘2) ⋅ 𝐵𝐿𝐶𝑀(𝑘1,𝑘2) 

Since we can express: 

𝐴𝐿𝐶𝑀(𝑘1,𝑘2) = 𝐴𝑚𝑘1 , 

𝐵𝐿𝐶𝑀(𝑘1,𝑘2) = 𝐵𝑛𝑘2  

for some natural numbers 𝑚, 𝑛 ∈ ℕ, it follows that: 

(𝐴 ⋅ 𝐵)𝐿𝐶𝑀(𝑘1,𝑘2) = (𝐴𝑘1)𝑚(𝐵𝑘2)𝑛 = 𝟎𝑚 ∙ 𝟎𝑛 = 𝟎 

Therefore, it is confirmed that the product remains 

within the set of nilpotent matrices, i.e., (𝐴 ⋅ 𝐵) ∈

𝑁. 

2. Associativity 

For arbitrary elements 𝐴, 𝐵, 𝐶 ∈ 𝑁, associativity 

holds due to standard properties of matrix 

multiplication: 

𝐴 ∙ (𝐵 ∙ 𝐶) = (𝐴 ∙ 𝐵) ∙ 𝐶 

  Hence, associativity is satisfied in (𝑁,  ⋅). 

3. Existence of Identity Element 

Since the identity matrix 𝐼𝑛  does not belong to 𝑁 

because it is not nilpotent, there is no identity 

element in 𝑁. Consequently, there does not exist any 

element 𝐴 ∈ 𝑁 such that for all 𝐵 ∈ 𝑁 the relations 

hold 𝐴 ∙ 𝐵 = 𝐵 ∙ 𝐴 = 𝐴. 

4. Existence of Inverse Elements 

Because an identity element does not exist in this 

structure, it follows that no inverse elements can be 

defined for members within 𝑁. 

From points one through four above, we conclude that 𝑁 

forms a Semigroup. 

B. Algebraic Structure of Idempotent Matrices 

Consider the pair (𝑨,⋅), where 𝑨 is the set of idempotent 

matrices and " ∙ " denotes matrix multiplication. We will 

examine this structure based on the four group axioms as 

follows: 

1. Closure 

Take any 𝐴, 𝐵 ∈ 𝑨. The product 𝐴 ⋅ 𝐵 is also an 

idempotent matrix, which can be shown by: 

(𝐴 ⋅ 𝐵)2 = 𝐴2 ⋅ 𝐵2 

Since 𝐴 and 𝐵 are idempotent, meaning 𝐴2 = 𝐴 and 

𝐵2 = 𝐵, it follows that: 

(𝐴 ⋅ 𝐵)2 = 𝐴 ⋅ 𝐵 

Therefore, it is confirmed that the product remains 

within the set of idempotent matrices; hence, closure 

holds. 

 

2. Associativity 

For any matrices 𝐴, 𝐵, 𝐶 ∈ 𝑨, associativity naturally 

holds due to standard properties of matrix 

multiplication: 

𝐴 ⋅ (𝐵 ⋅ 𝐶) = (𝐴 ⋅ 𝐵) ⋅ 𝐶 

Thus, associativity applies in this context. 

3. Existence of Identity Element 

The identity matrix 𝐼𝑛 belongs to the set 𝑨 such that 

for every element 𝐴 ∈ 𝑨 the following holds true: 

𝐼𝑛 ∙ 𝐴 = 𝐴 ∙ 𝐼𝑛 = 𝐴 

4. Existence of Inverse Elements 

Consider a matrix 𝐴 = [
3 −6
1 −2

] ∈ 𝑨,  determinant 

is calculated as: 𝑑𝑒𝑡(𝐴) = 3(−2) − 1(−6) = 0, 

which means it is singular and therefore does not 

have an inverse. This shows there exists at least one 

element in 𝑨 without an inverse. 

From points one through four above—closure, 

associativity, identity exist but inverses do not—it can be 

concluded that (𝑨,∙) forms a Monoid. 

C. Example of Nilpotent and Idempotent Matrix Groups 

A detailed investigation reveals that no matrix can 

simultaneously exhibit both nilpotent and idempotent 

characteristics, except for a very special case. Nilpotent 

matrices are defined by the property that some positive power 

of the matrix equals the zero matrix, while idempotent 

matrices satisfy the condition that squaring them yields 

themselves. These two properties are fundamentally different 

and generally incompatible in non-trivial cases. 

However, by considering the nilpotency condition 𝑁𝑘 = 𝟎 

where k is a non-negative integer, it becomes evident that the 

zero matrix lies at the intersection of these two sets: 0 ∈ 𝑵 ∩

𝑨. The zero matrix is unique in this regard because it trivially 

satisfies both definitions — raising it to any power results in 

itself (zero), fulfilling nilpotency as well as idempotency. 

Based on this premise, we can consider the algebraic 

structure formed solely by this zero element under 

multiplication, denoted as (0,⋅). This structure meets all 

group axioms: closure (the product of zero with itself is zero), 

associativity (inherited from standard multiplication), 

existence of an identity element (which coincides with zero 

here), and existence of inverses (trivially satisfied since there 

is only one element). Moreover, this trivial group is 

commutative because multiplication involving only one 

element cannot violate commutativity. 

This example serves as an important illustration within 

algebraic structures: although more complex matrices cannot 

be both nilpotent and idempotent simultaneously, their 

intersection contains at least one fundamental object — the 

zero matrix. It highlights how certain extreme or degenerate 

cases can satisfy multiple algebraic properties concurrently. 

In summary, while exploring groups formed by nilpotent 

or idempotent matrices individually leads to rich structures 

with diverse behaviors, their overlap reduces to a minimal but 

mathematically significant entity. The trivial group 
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consisting solely of the zero matrix exemplifies how 

foundational elements underpin broader algebraic concepts. 

D.  Example of an Idempotent Matrix Group 

An illustrative example of an idempotent matrix group is 

the set consisting solely of identity matrices, denoted as 𝐼𝑛. 

The structure (𝐼𝑛 ,⋅), where the operation is standard matrix 

multiplication, forms a group that not only satisfies all group 

axioms but also exhibits commutativity. This means it 

qualifies as an Abelian group. 

The defining property of idempotent matrices is that 

squaring the matrix yields the same matrix. In this case, for 

every identity matrix In, it holds true that: 𝐼𝑛
2 = 𝐼𝑛. This 

confirms that each element in this set inherently possesses the 

idempotent property. 

Because (𝐼𝑛 ,⋅) contains only identity elements and respects 

commutative multiplication, it represents a simple yet 

fundamental example of a commutative (Abelian) idempotent 

group. This trivial structure serves as a foundational building 

block in linear algebra and abstract algebra alike. 

Beyond its simplicity, this example highlights important 

concepts about how certain sets with very restrictive 

membership can still form rich algebraic structures. The 

identity matrix plays a crucial role in many mathematical 

contexts due to its neutral behavior under multiplication and 

its unique position as both an idempotent and invertible 

element. 

Moreover, understanding such elementary groups helps 

build intuition for more complex systems where multiple 

elements interact under various operations but may not 

always satisfy properties like commutativity or idempotency 

simultaneously. 

In conclusion, while more intricate examples exist within 

matrix theory and algebraic structures at large, the set 

containing just identity matrices remains one of the clearest 

demonstrations of an Abelian idempotent group — simple yet 

mathematically significant. 

E. Example of a Nilpotent Matrix Group 

When considering groups formed by nilpotent matrices that 

are not idempotent, it becomes apparent that such groups do 

not exist in the conventional sense. This is primarily because 

the identity matrix 𝐼𝑛, which serves as the multiplicative 

identity in matrix groups, does not belong to the set of 

nilpotent matrices 𝑁. 

As a result, these structures fail to satisfy all group axioms 

and can only be classified as semigroups. Nilpotent matrices 

inherently lack an identity element within their set since 

raising them to some power yields zero rather than an 

invertible element. Without this identity matrix present, it is 

impossible for (𝑁,∙) to form a full group under multiplication. 

Examples of such algebraic structures are therefore 

limited to semigroups unless additional assumptions or 

modifications are introduced—similar to those discussed in 

previous sections regarding nilpotent and idempotent matrix 

groups. These assumptions often involve restricting attention 

to trivial cases or extending the set with additional elements. 

This limitation highlights an important aspect of algebraic 

structures involving nilpotency: while they exhibit interesting 

properties individually, their inability to include an identity 

element restricts their classification within group theory. 

Consequently, researchers often study these sets under 

weaker algebraic frameworks like semigroups or monoids 

instead. 

F. Summary of Algebraic Properties of Matrix Sets 

In order to provide a clear overview of the algebraic 

characteristics discussed in this study, the following table 

summarizes the key properties—closure, associativity, 

identity element existence, and invertibility—of each matrix 

set under multiplication. These sets include nilpotent matrices 

(𝑵), idempotent matrices (𝑨), their union (𝑵 ∪ 𝑨), and their 

intersection (𝑵 ∩ 𝑨). 

 

Tabel 1. Summary of Algebraic Properties 

Algebraic 

Property 
(𝑁,∙) (𝑨,∙) (𝑵 ∪ 𝑨,∙) (𝑁 ∩ 𝐴,∙) 

Closure Yes Yes 

Depends 

on 

elements; 

generally 

no 

Yes 

(contains 

zero 

matrix 

only 

Associativity Yes Yes Yes Yes 

Identity 

Element 
No 

Exists 

(identity 

matrix 

𝐼𝑛) 

No 

Zero 

matrix 

acts as 

identity-

like 

element 

Inverse 

Element 
No 

Not 

always 

(some 

singular 

matrices 

exist) 

No 

Trivial 

inverse 

due to 

single 

element 

 

This summary highlights that while both nilpotent and 

idempotent sets individually satisfy closure and associativity 

under multiplication, only the idempotent set contains an 

identity element. The union does not generally form a group 

or monoid due to lack of closure or identity. The intersection 

is minimal — essentially containing only the zero matrix — 

which trivially satisfies closure and associativity but lacks a 

true identity or inverses. 

This tabular presentation aids in understanding how these 

algebraic structures relate to one another within the context 

of matrix multiplication. 
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IV. RECOMMENDATION AND CONCLUSION 

This study has explored the algebraic structures formed by 

sets of nilpotent and idempotent matrices under matrix 

multiplication. The investigation focused on verifying group 

axioms within these sets and identifying the nature of their 

algebraic systems.  

It is recommended that future research expand upon this 

work by incorporating a wider variety of examples, including 

non-trivial cases or larger classes of matrices. Additionally, 

exploring modifications or generalizations to existing 

definitions could provide deeper insights into how these 

matrix sets behave under different operations or constraints. 

Such extensions may reveal new types of algebraic structures 

beyond semigroups and monoids. 

The findings confirm that the set of nilpotent matrices 

(𝑁,⋅), with multiplication as the operation, forms a semigroup 

but does not satisfy all group axioms due to the absence of an 

identity element and inverses within 𝑁. On the other hand, 

the set of idempotent matrices (𝐴,⋅) constitutes a monoid, 

since it includes an identity element but generally lacks 

inverses for all elements. 

Furthermore, trivial yet important examples were 

identified: 

• The zero matrix serves as both nilpotent and 

idempotent simultaneously, forming a minimal 

commutative group structure under multiplication. 

• The set containing only identity matrices forms an 

Abelian idempotent group due to its closure 

properties, existence of identity elements, 

invertibility, and commutativity. 

These results highlight fundamental limitations in 

constructing full groups from nilpotent or idempotent 

matrices alone but also emphasize how certain special cases 

can satisfy stronger algebraic properties. Understanding these 

foundational structures provides valuable insight into more 

complex algebraic systems encountered in linear algebra and 

abstract algebra.  

In conclusion, this research lays groundwork for further 

exploration into generalized matrix groups involving 

nilpotency and idempotency concepts. Future studies might 

investigate additional operations or hybrid structures 

combining multiple properties to enrich theoretical 

understanding as well as practical applications in 

mathematics and related fields.  
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