International Journal of Mathematics and Computer Research

ISSN: 2320-7167

Volume 13 Issue 05 May 2025, Page no. – 5187-5189

Index Copernicus ICV: 57.55, Impact Factor: 8.615

DOI: 10.47191/ijmcr/v13i5.08

On Fixed Points in B-Rectangular Metric Spaces

A.S. Saluja¹, Asmita Yadav²

^{1,2}Department of Mathematics, Institute for Excellence in Higher Education, Bhopal-462016, Madhya Pradesh, India.

ARTICLE INFO	ABSTRACT
Published Online:	This paper presents fixed point results in b-rectangular metric spaces. The results obtained
15 May 2025	expand and generalize several well-established finding in the existing literature.
Corresponding Author:	2020 Mathematics Subject Classification: Primary: 54H25; Secondary: 54E50, 47H10.
A.S. Saluja	

KEYWORDS: Fixed point, b-metric space, rectangular metric space, b-rectangular metric space.

1. INTRODUCTION

In 1922,Banach proved his classical contraction principle. The investiogation of existence and uniqueness of fixed point for a self mapping and common fixed point for two or more mappings has become a very active and natural subject of interest. many researchers proved Banach contraction principle in multitude of generalized metric space . In particular, b-metric spaces was introduced by Bakhtin[2] and Czerwik[6] as a generalization of metric spaces. They proved Banach contraction principle in b-metric spaces.

2. PRELIMINARIES

Definition 2.1([2],[6]) let X be a non empty set and $s \ge 1$ be a given real number .A function $d: X \times X \to [0, \infty)$ is a b-metric on X if , for all $x, y, z \in X$ the following conditions hold:

(b1)
$$d(x, y) = 0$$
 iff $x = y$

$$(b2)d(x, y) = d(y, x)$$

 $(b3)d(x, z) \le S[d(x, y) + d(y, z)]$ (b-tringular inequality)

In this case the pair (X, d) is called a b-metric space

Definition 2.2[1] let X be a non empty set, and let $d: X \times X \to [0, \infty)$ be a mapping such that for all $x, y \in X$ and all distinct points $u, v \in X$, each distinct from x and y:

(r1)
$$d(x, y) = 0$$
 iff $x = y$

(r2)
$$d(x, y) = d(y, x)$$

 $(r3)d(x, y) \le d(x, u) + d(u, v) + d(v, y)$ (rectangular inequality)

Then (X, d) is called rectangular or generalized metric space or Branciari's space.

Definition2.3[4] let X be a non empty set, $s \ge 1$ be a given real number and let

 $d: X \times X \to [0, \infty)$ be a mapping such that for all $x, y \in X$ and distinct $u, v \in X$, each distinct from x and y: (br1)d(x, y) = 0 iff x = y

(br2)d(x, y) = d(y, x)

(br3) $d(x, y) \le S[d(x, u) + d(u, v) + d(v, y)]$ (b-rectangular inequality)

Then (X, d) is called a b-rectangular metric space or a b-generalized metric space (bg.m.s)

Note: that every metric space is a b-rectangular metric space and every rectangular metric space is a b-rectangular metric space (with coefficient s=1) However the converse is not necessarily true.

Also, every metric space is a b-metric space and every bmetric space is a b-rectangular metric space (not necessarily with the same coefficient

3. MAIN RESULT

Theorem 3.1: let (X, d) be a complete b-rectangular metric space with t > 2 and let $h, k: X \to X$ be two self maps satisfying,

$$d(hx, ky) \leq \delta P(x, y) + QR(x, y)$$
(3.1.1)

For all $x, y \in X$ where $\delta \in [0, \frac{1}{t}]$ and Q > 1 and

 $P(x, y) = max\{d(x, y), d(x, hx), d(y, ky)\},\$

 $R(x, y) = min\{d(x, hx), d(y, ky), d(x, ky), d(y, hx)\}.$

Then h and k have a unique common fixed point.

Proof: let α_0 be an arbitrary point in X.

Define the sequence $\{\alpha_n\}$ in X as $\alpha_{2n+1} = h\alpha_{2n}$ and $\alpha_{2n+2} = k\alpha_{2n+1}$ for $n \ge 1$

Suppose that there is some $n \ge 1$ such that $\alpha_n = \alpha_{n+1}$

If n = 2m then $\alpha_{2m} = \alpha_{2m+1}$ and from (3.1.1)

 $d(\alpha_2m+1, \alpha_2m+2 = d(h\alpha_2m, k\alpha_2m+1)$

```
\leq \delta P(\alpha 2m, \alpha 2m+1) + QR(\alpha 2m, \alpha 2m+1)
                                                                                                                                                              d(\alpha_n, \alpha_n+2m+1) \le t[d(\alpha_n, \alpha_n+1) + d(\alpha_n+1, \alpha_n+2)]
Where
                   P(\alpha 2m, \alpha 2m+1) = max\{d(\alpha 2m, \alpha 2m+1),
                                                                                                                                          + d(\alpha_n+2, \alpha_n+2m+1)
d(\alpha 2m, h\alpha 2m), d(\alpha 2m+1, k\alpha 2m+1))
                                                                                                                                                                           \leq t[d_n+d_{n+1}]+t^2[d_{n+2}+d_{n+3}]+t^3[d_{n+4}]
                                                                                                                                          + d_n + 5] + \cdots + t^{m+1}d_n + 2m
              P(\alpha_2 m, \alpha_2 m+1) = max\{d(\alpha_2 m, \alpha_2 m+1), d(\alpha_2 m,
                                                                                                                                                                           \leq t[\delta nd_0 + \delta n + 1d_0] + t2[\delta n + 2d_0 +
\alpha_2 m+1), d(\alpha_2 m+1, \alpha_2 m+2)}
              P(\alpha 2m, \alpha 2m+1) = max\{0,0, d(\alpha 2m+1, \alpha 2m+2)\}
                                                                                                                                          \delta n+3d_0]+...+tm\delta n+2md_0
                                                                                                                                                                                                 =\frac{1+\delta}{1-t\delta^2}t\delta^n d_0
 R(\alpha_2 m, \alpha_2 m+1) = min\{d(\alpha_2 m, h\alpha_2 m), d(\alpha_2 m, \alpha_2 m+1),
                                                                                                                                                                                                                                                (t\delta^2 < 1)
d(\alpha_2 m, k\alpha_2 m+1), d(\alpha_2 m+1, h\alpha_2 m)
                                                                                                                                                                    Hence, d(\alpha n, \alpha n+2m+1) \le \frac{1+\delta}{1-t\delta^2}t
                                              = min\{d(\alpha_2m, \alpha_2m+1), d(\alpha_2m+1,
                                                                                                                                          ...(3.1.3)
\alpha_2 m + 2), d(\alpha_2 m, \alpha_2 m + 2), d(\alpha_2 m + 1, \alpha_2 m + 1)
                                                                                                                                          Similarly we can show that
                                              = 0
                                                                                                                                          d(\alpha n, \alpha n+2m) \leq \frac{1+\delta}{1-t\delta^2}t \delta^n d_0
                                                                                                                                                                                                                                                   \delta^{n-2}d*_{0}
Thus we have,
                d(\alpha_2m+1, \alpha_2m+2) \leq \delta d(\alpha_2m+1, \alpha_2m+2)
                                                                                                                                                                                                                                                ...(3.1.4)
Which is a contradiction with \delta \in [0,\frac{1}{\epsilon}]
                                                                                                                                         Thus from (3.1.3) and (3.1.4) we obtain that
Therefore \alpha_{2m+1} = \alpha_{2m+2} Thus we have \alpha_{2m} = \alpha_{2m+1} = \alpha_{2m+1}
                                                                                                                                                                                  \lim d(\alpha_n, \alpha_{n+p}) = 0 \quad for \ all \quad p = 1,2,3
\alpha 2m+2
                                                                                                                                          \dots n \rightarrow \infty
                                                                                                                                          Hence \{\alpha_n\} is a b-rectangular -cauchy sequence in (X, d).
It means that \alpha_{2m} = h\alpha_{2m} = k\alpha_{2m}
                                                                                                                                          By completeness of (X, d), \exists r \in X such that \alpha_n = h\alpha_{n-1} \rightarrow r
That is \alpha_{2m} is a common fixed point of f and g
If n = 2m + 1 then using same arguments, it can be shown
                                                                                                                                          Now we prove that hr = r (by b-rectangular-inequality)
that \alpha_{2m+1} is a common fixed point h and k
                                                                                                                                                                 \frac{1}{t}d(hr, r) \leq d(hr, k\alpha n) + d(k\alpha_n, \alpha_n) + d(\alpha_n, r)
Now suppose that \alpha_n \neq \alpha_{n+1} for all n \geq 1
d(\alpha_2 n+1, \alpha_2 n+2) = d(h\alpha_2 n, k\alpha_2 n+1)
                                                                                                                                                                                            \leq \delta P(r, \alpha_n) + QR(r, \alpha_n) + d(\alpha_{n+1},
                                      \leq \delta P(\alpha_{2n}, \alpha_{2n+1}) + QR(\alpha_{2n}, \alpha_{2n+1})
                                                                                                                                          \alpha_n) + d(\alpha_n, r)
...(3.1.2)
                                                                                                                                                                  Where P(r, \alpha_n) = \max\{d(r, \alpha_n), d(r, hr), d(\alpha_n, \alpha_n)\}
Where
                                                                                                                                          \{k\alpha_n\}\} \rightarrow d(r, hr) \text{ as } n \rightarrow \infty
 P(\alpha 2n, \alpha 2n+1) = max\{d(\alpha 2n, \alpha 2n+1), d(\alpha 2n, h\alpha 2n),
                                                                                                                                                                                     R(r, \alpha_n) = \min \{d(r, hr), d(\alpha_n, k\alpha_n),
d(\alpha 2m+1, k\alpha 2n+1)
                                                                                                                                          d(r, g\alpha_n), d(\alpha_n, hr)\} \to 0 \text{ as } n \to \infty
                                                                     max\{d(\alpha 2n,
                                                                                                        \alpha 2n+1),
d(\alpha 2n, \alpha 2n+1), d(\alpha 2n+1, \alpha 2n+2)
                                                                                                                                         Hence taking the limit as n \to \infty, we obtain
                                                                     max\{d(\alpha 2n,
                                                                                                       \alpha 2n+1),
                                                                                                                                          \frac{1}{r}d(hr, r) \leq \delta d(r, hr) + Q.0 + 0 + 0
d(\alpha 2n+1, \alpha 2n+2)
                                                                                                                                          That is hr = r.
And
                                                                                                                                          Hence r is a fixed point of h.
 R(\alpha 2n, \alpha 2n+1) = min\{d(\alpha 2n, h\alpha 2n), d(\alpha 2n+1, k\alpha 2n+1),
                                                                                                                                          Now we show that kr = r. Suppose that r \neq kr by (3.1)
d(\alpha 2n, k\alpha 2n+1), d(\alpha 2n+1, h\alpha 2n)
                                                                                                                                          d(r, kr) = d(hr, kr) \le \delta P(r, r) + QR(r, r)
                           = min\{d(\alpha 2n, \alpha 2n+1), d(\alpha 2n+1, \alpha 2n+2),
                                                                                                                                          Where P(r, r) = \max \{(r, r), d(r, hr), d(r, kr)\} = \max\{0, 0, 1\}
d(\alpha 2n, \alpha 2n+2), 0
                                                                                                                                          d(r, kr)} = d(r, kr)
                                                    =0
                                                                                                                                             and R(r, r) = \min\{d(r, hr), d(r, kr), d(r, kr), d(r, hr)\} = 0
If P(\alpha_{2n}, \alpha_{2n+1}) = d(\alpha_{2n+1}, \alpha_{2n+1}) then by (3.1.2)
                                                                                                                                          By (3.1.1)
                               d(\alpha_2 n+1, \alpha_2 n+2) \le \delta d(\alpha_2 n+1, \alpha_2 n+2)
                                                                                                                                                                    d(r, kr) \leq \delta d(r, kr)
                      Which is a contradiction.
                                                                                                                                                                 Which is a contradiction.
Thus P(\alpha 2n, \alpha 2n+1) = d(\alpha 2n, \alpha 2n+1)
                                                                                                                                          Thus kr = r.
And from (3.1.2)
                                                                                                                                          Now we show that uniqueness
                                                                                                                                          Suppose r and s are different common fixed points of h and
                       d(\alpha_2 n+1, \alpha_2 n+2) \leq \delta d(\alpha_2 n, \alpha_2 n+1)
                     Similarly it can be proved that
                                                                                                                                          d(r, s) = d(hr, ks) \le \delta P(r, s) + QR(r, s)
                      d(\alpha_2 n+3, \alpha_2 n+2) \leq \delta d(\alpha_2 n+2, \alpha_2 n+1)
                                                                                                                                                                 where P(r, s) = max. \{d(r, s), d(r, hr), d(s, hr), d
So,
                                                                                                                                          ks)= d(r, s)
d(\alpha_{n+1}, \alpha_n) \le \delta d(\alpha_n, \alpha_{n-1}) \le \delta^n d(\alpha_1, \alpha_0) for all n \ge 1.
                                                                                                                                         and R(r, s) = \min \{d(r, hr), d(s, ks), d(r, ks), d(s, hr)\} = 0
Similarly we can show
                                                                                                                                         Thus from (3.5)
d(\alpha_{n+2}, \alpha_n) \leq \delta^n d(\alpha_2, \alpha_0)
                                                                                                                                                   d(r, s) \le \delta d(r, s)
We can show that \{\alpha_n\} is a b- rectangular - Cauchy sequence.
                                                                                                                                         So d(r, s) = 0
using b-rectangular inequality and
                                                                                                                                                                  i. e. r = s
\alpha_n \neq \alpha_{n+1} for all n \geq 1 and d_n = d(\alpha_n, \alpha_{n+1}),
```

 $d_n^* = d(\alpha_n, \alpha_{n+2})$

 $\delta^n d_0$

4. CONCLUSION

As the rectangular b-metric space is relatively new addition two the existing literature. Therefore we endeavour to further enrich this notion by introducing the idea of exetended rectangular b- metric spaces.

REFERENCES

- A.Branciari. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. *Publ. Math. Debrecen*, 57(1-2),(2000) 31-37
- 2. F.Gu, On some common coupled fixed point results in rectangular b-metric spaces. *Journal of Nonlinear Sciences & Applications (JNSA)*,(2017), *10*(8)
- Gardašević-Filipović, M., Kukić, K., Gardašević, D., & Mitrović, Z. D. Some Best Proximity Point Results in the Orthogonal-Complete-Metric-Like Spaces. *Journal of Contemporary Mathematical Analysis* (Armenian Academy of Sciences), (2023),58(2), 105-115.
- H.S.Ding, M.Imdad, S.Radenović, & J.Vujaković
 On some fixed point results in b-metric, rectangular
 and brectangular metric spaces. *Arab Journal of Mathematical Sciences*, 22(2) (2016), 151-164.
- 5. I.A.Bakhtin, The contraction mapping in almost metric spaces, Funct. *Funct. Ana. Gos. Ped. Inst. Unianowsk*, 30 (1989), 26-37.
- M.Asim, M.Imdad, S.Radenovic, Fixed point results in extended rectangular b-metric spaces with an application. *UPB Sci. Bull. Ser. A*, 81(2), 43-50,(2019).
- N.Goswami, N.Haokip, V.N.Mishra . F-contractive type mappings in b-metric spaces and some related fixed point results. *Fixed Point Theory and Applications*, 2019(2019), 1-17.
- R.George, Z.D.Mitrović, & S.Radenović, On Some Coupled Fixed Points of Generalized T-Contraction Mappings in a bv (s)-Metric Space and Its Application. *Axioms*, 9(4) (2020),129.
- 9. R.George, K.P.Reshma, & R.Rajagopalan, A generalised fixed point theorem of Presic type in cone metric spaces and application to Markov process. *Fixed Point Theory and Applications*, 2011, 1-8.
- R.P.Pant, Rakočević, V. Gopal, D., Pant, A., & Ram, M. (2021). A general fixed point theorem. *Filomat*, 35(12), 4061-4072.
- 11. S. Czerwik, Contraction mappings in \$ b \$-metric spaces. *Acta mathematica et informatica universitatis ostraviensis*, 1 (1993),5-11
- 12. V.Öztürk, Fixed Point Theorems in \$ b \$-Rectangular Metric Spaces. *Universal Journal of Mathematics and Applications*, 3(1), 28-32. (2020).
- 13. Z.D. Mitrović, S.Radenović, On F-contractions for weak α-admissible mappings in metric-like spaces. *Mathematics*, 8(9), 1629. (2020)

- Z.D.Mitrović, S.Radenović, The Banach and Reich contractions in b_v (s) bv (s)-metric spaces. *Journal* of Fixed Point Theory and Applications, 19, 3087-3095. (2017)
- Mitrovic, Z. D., & Radenovic, S. (2019). On Meir-Keeler contraction in Branciari b-metric spaces. Trans. A. Razmadze Math. Inst, 173(1), 83-90.
- 16. Z.Mustafa, J.R.Roshan, V.Parvaneh, Z.Kadelburg,. Some common fixed point results in ordered partial b-metric spaces. *Journal of inequalities and Applications*, 2013, 1-26. (2013)
- 17. Z.Kadelburg, S.Radenović,. On cone metric spaces: a survey. *Nonlinear Analysis: Theory, Methods & Applications*, 74(7), 2591-2601. (2011)