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I. INTRODUCTION 

          In this study, G denotes a finite, simple, connected 

graph, V(G) and E(G) denote the vertex set and edge set of 

G. The degree ( )
Gd u of a vertex u is the number of vertices 

adjacent to u.  Any undefined terminologies and notations 

may be found in [1]. 

         A topological index is a numerical parameter 

mathematically derived from the graph structure. In 

Chemical Graph Theory, concerning the definition of the 

topological index on the molecular graph and concerning 

chemical properties of drugs can be studied by the graph 

index calculation. Several topological indices have been 

considered in Theoretical Chemistry and many topological 

indices were defined by using vertex degree concept [2]. 

The Zagreb, Gourava, Revan, temperature, Sombor indices 

are the most degree based topological indices in Chemical 

Graph Theory, see [3-29].  Topological indices have their 

applications in various disciplines in Science and 

Technology [30, 31, 32].   

A u-v path P in G is a sequence of vertices in G, starting 

with u and ending at v, such that consecutive vertices in P 

are adjacent, and no vertex is repeated. A path 

1 2 1  , ,... kv v v +=  in G is a downhill path if for every i, 1 ≤ 

i ≤ k , ( ) ( )1 .G i G id v d v +
 

            A vertex v is downhill dominates a vertex u if there 

exists a downhill path originated from u to v. The downhill 

neighborhood of a vertex v is denoted by ( )
dnN v and 

defined as: ( )
dnN v  = {u: v downhill dominates u}.  The 

downhill degree ( )
dnd v of a vertex v is the number of 

downhill neighbors of v [33].  

 

Recently, some downhill indices were studied in [34, 35]. 

                      

          The Nirmala index was introduced in [36] and it is 

defined as 

            

( ) ( ) ( )
( )

.G G

uv E G

N G d u d v


= +
 

         Motivated by the definition of Nirmala index, we 

introduce the downhill Nirmala index of a graph and it is 

defined as 

 

            

( ) ( ) ( )
( )

.dn dn

uv E G

DWN G d u d v


= +
 

          Considering the downhill Nirmala index, we introduce 

the downhill Nirmala exponential of a graph G and defined 

it as 

             ( )
( ) ( )

( )

, .dn dnd u d v

uv E G

DWN G x x
+



= 
 

          We define the modified downhill Nirmala index of a 

graph G as  

              ( )
( ) ( )( )

1
.m

uv E G dn dn

DWN G
d u d v

=
+


 

         

  Considering the modified downhill Nirmala index, we 

introduce the modified downhill Nirmala exponential of a 

graph G and defined it as 

                ( )
( ) ( )

( )

1

, .dn dnd u d vm

uv E G

DWN G x x
+



= 
 

Recently, some Nirmala indices were studied in [37-50]. 

            In this paper, the downhill Nirmala index, modified 

downhill Nirmala index and their corresponding 

exponentials of certain graphs are computed.
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II. RESULTS FOR SOME STANDARD GRAPHS 

Proposition 1.  Let G   be r-regular with n vertices and r≥ 2. 

Then      

             ( )
( )1

.
2

nr n
DWN G

−
=

 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2 

and  
2

nr
 edges. Then ( ) 1dnd v n= −  for every v in G. 

  ( ) ( ) ( )
( )

dn dn

uv E G

DWN G d u d v


= +   

    

                

( ) ( )
( )1

1 1 .
2 2

nr nr n
n n

−
= − + − =             

Corollary 1.1.  Let Cn   be a cycle with n≥ 3 vertices. Then      

             ( ) ( )2 1 .nDWN C n n= −

 
 

Corollary 1.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

             ( )
( ) ( )

 

1 1
.

2
n

n n
D K

n
WN

− −
=

 

Proposition 2.  Let P be a path with n3 vertices. Then      

    ( ) ( ) ( )2 1 3 2 1 .DWN P n n n= - + - -  

Proof: Let P be a path with n3 vertices. Then there are two 

types of the downhill degree of edges as follows: 

 

       E1 = {uv  E(P) | ddn(u)=0,  ddn(v)=n– 1},   | E1| = 2. 

       E2 = {uv E(P) | ddn(u)= ddn(v)=n– 1},       | E2| = n – 3. 

Then

 

   

( ) ( ) ( )

( )

dn dn

uv E P

DWN P d u d v


= +
 

          

( ) ( ) ( ) ( )2 0 1 3 1 1n n n n= + - + - - + -

 

         

( ) ( )2 1 3 2 1 .n n n= - + - -

 
 

Proposition 3.  Let Km,n   be a complete bipartite graph with 

m<  n. Then 

       ( ),    .m nDWN K mn n=  

Proof: We obtain the partition of the edge set of Km,n   as 

follows: 

   E1 = {uv  E(Km,n) | ddn(u)=n,  ddn(v)=0},   | E1| = mn. 

We get 

      
( ),    0 .m nDWN mK n n mn n= + =      

 

Corollary 3.1.  Let K1,n    be a star with n≥ 3 vertices. Then      

             ( )1,   .nDWN K n n=

 

 

Corollary 3.2.  Let Kn    be a complete graph with n≥ 3 

vertices. Then      

             ( ),  
2 .n nD KWN n n=

 

III. RESULTS FOR WHEELS 

 The wheel Wn is the join of Cn and K1. Clearly Wn 

has n+1vertices and 2n edges. The vertex K1 is called apex 

and the vertices of Cn are called rim vertices.  

 
Figure 1. Wheel Wn 

 

Lemma 1. Let Wn be a wheel with n+1vertices, n4. Then 

there are two types of the downhill degree of vertices as 

given below: 

   V1 = {u V(Wn) | ddn(u) = n},         | V1 | = 1. 

  V2 = {u  V(Wn) | d2dn(u) =  n – 1},  | V2 | = n. 

 

Lemma 2. Let Wn be a wheel with n+1vertices, n4. Then 

there are two types of the downhill degree of edges as 

follows: 

   E1 = {uv E(Wn) | ddn(u) = n, ddn(v) = n – 1},  | E1 | = n. 

   E2 = {uv E(Wn) | ddn(u) =  ddn(v) = n – 1},     | E2 | = n. 

 

Theorem 1. Let Wn be a wheel with n+1vertices, n4. Then 

the downhill Nirmala index of Wn is  

    ( ) 2 1 2 1.nDWN W n n n n= - + -
 

Proof: From definition and by Lemma 2, we deduce 

    

( ) ( ) ( )

( )n

n dn dn

uv E W

DWN W d u d v


= +
 

                      ( ) ( ) ( )1 1 1n n n n n n= + - + - + -  

    

                      2 1 2 1.n n n n= - + -  

Theorem 2. Let Wn be a wheel with n+1vertices, n4. Then 

the downhill Nirmala exponential of Wn is  

     ( ) 2 1 2 2, .n n

nDWN W x nx nx- -= +
 

 

Proof: From definition and by Lemma 2, we deduce 

    ( )
( ) ( )

( )

, dn dn

n

d u d v
n

uv E W

DWN W x x
+



= 
 

 

            
( ) ( ) ( )1 1 1n n n nnx nx+ - - + -= +         

                         
2 1 2 2 .n nnx nx- -= +  
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Theorem 3. Let Wn be a wheel with n+1vertices, n4. Then 

the modified downhill Nirmala index of Wn is  

     ( )
( )

.
2 1 2 1

m

n

n n
DWN W

n n
= +

- -
 

 

 

Proof: From definition and by Lemma 2, we deduce 

   

( )
( ) ( )( )

1

n

m
n

uv E W dn dn

DWN W
d u d v

=
+

  

         
( ) ( ) ( )1 1 1

n n

n n n n
= +

+ - - + -
  

         
( )

.
2 1 2 1

n n

n n
= +

- -
 

Theorem 4. Let Wn be a wheel with n+1vertices, n4. Then 

the modified downhill Nirmala exponential of Wn is  

 ( ) ( )

11

2 12 1, .m nn
nDWN W x nx nx --= +

 
 

Proof: From definition and by Lemma 2, we deduce 

( )
( ) ( )

( )

1

, dn dn

n

d u d vm
n

uv E W

DWN W x x
+



=   

  
( ) ( ) ( )

1 1

1 1 1n n n nnx nx+ - - + -= +  

                              
( )

11

2 12 1 .nnnx nx --= +  
 

IV. RESULTS FOR GEAR GRAPHS 

 A bipartite wheel graph is a graph obtained from 

Wn with n+1 vertices adding a vertex between each pair of 

adjacent rim vertices and this graph is denoted by Gn and 

also called as a gear graph. Clearly, |V(Gn)| = 2n+1 and 

|E(Gn)| = 3n. A gear graph Gn is depicted in Figure 2.             

 

           

 

 

 

 

 

 

 

 

 

Figure 2. Gear graph Gn 

                        

Lemma 3. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then Gn has three types of the downhill degree 

of vertices as follows: 

 V1 = {uV(Gn) | ddn(u) = 2n}. | V1 | = 1. 

 V2 = {u V(Gn) | ddn(u) = 2}. | V2 | = n. 

 V3 = {u  V(Gn) | ddn(u) = 0}. | V3 | = n. 

 

Lemma 4. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then Gn has two types of the downhill degree of 

edges as follows: 

 

 E1 = {u E(Gn) | ddn(u) =2n, ddn(v) = 2},  | E1 | = n. 

 E2 = {u E(Gn) | ddn(u) = 2,  ddn(v) = 0}, | E2 | = 2n. 

 

Theorem 5. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then the downhill Nirmala index of Gn is  

 ( ) 2 2 2 2.nDWN G n n n= + +
 

 

Proof: From definition and by Lemma 4, we deduce 

( ) ( ) ( )

( )n

n dn dn

uv E G

DWN G d u d v


= +  

  2 2 2 2 0n n n= + + +  

                              2 2 2 2.n n n= + +  
 

Theorem 6. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then the downhill Nirmala exponential of Gn is  

 ( ) 2 2 2, 2 .n

nDWN G x nx nx+= +
 

 

Proof: From definition and by Lemma 4, we deduce 

( )
( ) ( )

( )

, dn dn

n

d u d v
n

uv E G

DWN G x x
+



=   

  
2 2 2 02nnx nx+ += +  

                              
2 2 22 .nnx nx+= +  

 

Theorem 7. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then the modified downhill Nirmala index of 

Gn is  

 ( )
2

.
2 2 2

m

n

n n
DWN G

n
= +

+  
 

Proof: From definition and by Lemma 4, we deduce 

( )
( ) ( )( )

1

n

m
n

uv E G dn dn

DWN G
d u d v

=
+

  

  
2

2 2 2 0

n n

n
= +

+ +
 

                              
2

.
2 2 2

n n

n
= +

+
 

 

Theorem 8. Let Gn be a gear graph with 2n+1vertices, 3n 

edges, n4. Then the modified downhill Nirmala 

exponential of Gn is  

 ( )
1 1

2 2 2, 2 .m n
nDWN G x nx nx+= +
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Proof: From definition and by Lemma 4, we deduce 

( )
( ) ( )

( )

1

, dn dn

n

d u d vm
n

uv E G

DWN G x x
+



=   

  

1 1

2 2 2 02nnx nx+ += +  

                              

1 1

2 2 22 .nnx nx+= +  
 

V. RESULTS FOR HELM GRAPHS 

 The helm graph Hn is a graph obtained from Wn 

(with n+1 vertices) by attaching an end edge to each rim 

vertex of Wn. Clearly, |V(Hn)| = 2n+1 and |E(Hn)| = 3n. A 

graph Hn is shown in Figure 3. 

 
Figure 3. Helm graph Hn 

 

Lemma 5. Let Hn be a helm graph with 2n+1 vertices, n5. 

Then Hn has three types of the downhill degree of vertices as 

given below: 

 V1 = {u V(Hn) | ddn(u) =2 n}, | V1 | = 1. 

 V2 = {u V(Hn) | ddn(u) = 2n – 1}, | V2 | = n. 

 V3 = {u V(Hn) | ddn(u) = 0}, | V3 | = n. 

 

Lemma 6. Let Hn be a helm graph with 3n edges, n3. Then 

Hn has three types of the downhill degree of edges as 

follows: 

    E1 = {uv E(Hn) | ddn(u) = 2n, ddn(v) = 2n – 1}. | E1 | = n. 

   E2 = {uv E(Hn) | ddn(u) = ddn(v) =2n – 1}. | E2 | = n. 

   E3 = {uv  E(Hn) | ddn(u) =2n – 1, ddn(v) = 0}. | E3 | = n. 

 

Theorem 9. Let Hn be a helm graph with 2n+1 vertices, 

n3. Then the downhill Nirmala index of Hn is  

     ( ) ( )4 1 2 1 2 1.nDWN H n n n n= - + + -
 

 

Proof: By using definition and by Lemma 6, we obtain 

     

( ) ( ) ( )

( )n

n dn dn

uv E H

DWN H d u d v


= +
 

               

( ) ( ) ( )2 2 1 2 1 2 1n n n n n n= + - + - + -

 

              

( )2 1 0n n+ - +

                    

  

                    ( )4 1 2 1 2 1.n n n n= - + + -       

Theorem 10. Let Hn be a helm graph with 2n+1vertices, 3n 

edges, n4. Then the downhill Nirmala exponential of Hn is  

   ( )
( )4 1 2 2 1 2 1, .n n n

nDWN H x nx nx nx- - -= + +
 

 

Proof: From definition and by Lemma 6, we deduce 

    

( )
( ) ( )

( )

, dn dn

n

d u d v
n

uv E H

DWN H x x
+



= 
 

( ) ( ) ( ) ( )2 2 1 2 1 2 1 2 1 0n n n n nnx nx nx+ - - + - - += + +

                 
( )4 1 2 2 1 2 1.n n nnx nx nx- - -= + +  

   

 Theorem 11. Let Hn be a helm graph with 2n+1 vertices, 

n3. Then the modified downhill Nirmala index of Hn is  

    

( )
( ) ( )

.
4 1 2 2 1 2 1

m

n

n n n
DWN H

n n n
= + +

- - -
 

 

Proof: By using definition and by Lemma 6, we obtain 

  

( )
( ) ( )( )

1

n

m
n

uv E H dn dn

DWN H
d u d v

=
+


 

     
( ) ( ) ( )2 2 1 2 1 2 1

n n

n n n n
= +

+ - - + -
    

    
( )2 1 0

n

n
+

- +
 

   
( ) ( )

.
4 1 2 2 1 2 1

n n n

n n n
= + +

- - -
 

                                            

 Theorem 12. Let Hn be a helm graph with 2n+1 vertices, 

n3. Then the modified downhill Nirmala index of Hn      
 

 

Proof: By using definition and by Lemma 6, we obtain 

  

( )
( ) ( )

( )

1

, dn dn

n

d u d vm
n

uv E H

DWN H x x
+



= 
 

( ) ( ) ( ) ( )

1 1 1

2 2 1 2 1 2 1 2 1 0n n n n nnx nx nx+ - - + - - += + +

 

             

( ) ( )

1 11

2 2 1 2 14 1 .n nnnx nx nx- --= + +

 

     

           

 

  VI. CONCLUSION 

 In this paper, a novel invariant is considered which 

is the downhill Nirmala index. The downhill Nirmala index, 

modified downhill Nirmala idex and their corresponding 

exponentials for some graphs are determined.  
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