Keywords:-
Article Content:-
Abstract
The aim of this paper is to introduce and study a new class ((S, ||. , .||), – , u– ) of sequences with values in 2- Banach space as a generalization of the familiar sequence space p. We explore some of the preliminary results that characterize the linear topological structure of the class ((S, ||. , .||), – , u – ) when topologized it with suitable natural paranorm.
References:-
References
A. Wilansky , Modern methods in topological vector
spaces , Mc Graw_Hill Book
Co.Inc.New York (1978).
E. Savas, On some new sequence spaces in 2-
normed spaces using ideal convergence and an
Orlicz function, Hindawi Pub. Corp., Journal of
Inequality and Application, Vol. 2010,10.1155, (
.
H. Gunawan and H. Mashadi, On finite dimensional 2-
normed spaces, Soochow J.
Math., 27 (2001), 321–329.
I.J. Maddox, Some properties of paranormed sequence
spaces, London. J. Math. Soc.
, 2(1) (1969), 316–322.
J.A. White and Y.J. Cho , Linear mappings on linear 2–
normed spaces, Bull. Korean Math. Soc., 21(1)
(1984), 1–6.
J.K. Srivastava and N.P. Pahari , On Banach space
valued sequence space lM (X,
–
, p
–
, L) defined by
Orlicz function, South East Asian J.Math. &
Math.Sc., 10(1)(2011), 39 – 49.
J.K. Srivastava and N.P. Pahari, On 2- normed space
valued sequence space lM (X, ||. , .||, –
, p
–
) defined by
Orlicz function, Proc. of Indian Soc. of Math. and
Math. Sc., 6(2011), 243-251.
J.K. Srivastava and N.P. Pahari, On 2- Banach space
valued paranormed sequence spacec0 (X, M, ||. , .||, –
, p
–
) defined by Orlicz function,
Jour. of Rajasthan Academy of Physical Sciences,
(3) ( 2013) , 317-336.
K. Iseki, Mathematics on two normed spaces, Bull.
Korean Math. Soc., 13(2), (1976).
M. Açikgöz, A review on 2 – normed structures, Int.
Journal of Math. Analysis, 1(4) (2007),187 – 191.
M. Basariv and S. Altundag , On generalized
paranormed statistically convergent sequence
spaces defined by Orlicz function, Handawi. Pub. Cor.,
J. of Inequality and Applications (2009).
N.P. Pahari, On Banach space valued sequence space
l∞ (X,M, –
, p
–
, L) defined by Orlicz
function , Nepal Jour. of Science and Tech. , 12
(2011) , 252-259.
R. K. Tiwari and J. K. Srivastava, On certain Banach
space valued function spaces- II,
Math. Forum, 22(2010), 1-14.
R.W. Freese and Y.J. Cho, Geometry of linear 2-
normed spaces, Nova Science Publishers,
Inc. New York (2001).
R.W. Freese, Y.J. Cho and S.S. Kim, Strictly 2–convex
linear 2–normed spaces; J. Korean Math. Soc. , 29(
(1992), 391 – 400.
S.D. Parasar and B. Choudhary, Sequence spaces
defined by Orlicz functions, Indian
J. Pure Appl. Maths., 25(4) (1994), 419–428.
S. GÄahler, 2 -metrische RÄaume und ihre
topologische struktur , Math. Nachr.,6(1963),
-148.
V.A. Khan, On a new sequence space defined by
Orlicz functions, Common. Fac. Sci.
Univ. Ank-series, 57(2) (2008), 25–33.
V.N. Bhardwaj and I. Bala, Banach space valued
sequence space M (X, p), Int. J. of Pure and
Appl. Maths., 41(5) (2007), 617–626.