Keywords:-

Keywords: 2- normed space, sequence space, paranormed space, solid space.

Article Content:-

Abstract

The aim of this paper is to introduce and study a new class  ((S, ||. , .||),  – , u– ) of sequences with values in 2- Banach space as a generalization of the familiar sequence space p. We explore some of the preliminary results that characterize the linear topological structure of  the class  ((S, ||. , .||),  – , u – ) when topologized it with suitable natural paranorm.

References:-

References

A. Wilansky , Modern methods in topological vector

spaces , Mc Graw_Hill Book

Co.Inc.New York (1978).

E. Savas, On some new sequence spaces in 2-

normed spaces using ideal convergence and an

Orlicz function, Hindawi Pub. Corp., Journal of

Inequality and Application, Vol. 2010,10.1155, (

.

H. Gunawan and H. Mashadi, On finite dimensional 2-

normed spaces, Soochow J.

Math., 27 (2001), 321–329.

I.J. Maddox, Some properties of paranormed sequence

spaces, London. J. Math. Soc.

, 2(1) (1969), 316–322.

J.A. White and Y.J. Cho , Linear mappings on linear 2–

normed spaces, Bull. Korean Math. Soc., 21(1)

(1984), 1–6.

J.K. Srivastava and N.P. Pahari , On Banach space

valued sequence space lM (X, 

, p

, L) defined by

Orlicz function, South East Asian J.Math. &

Math.Sc., 10(1)(2011), 39 – 49.

J.K. Srivastava and N.P. Pahari, On 2- normed space

valued sequence space lM (X, ||. , .||,  –

, p

) defined by

Orlicz function, Proc. of Indian Soc. of Math. and

Math. Sc., 6(2011), 243-251.

J.K. Srivastava and N.P. Pahari, On 2- Banach space

valued paranormed sequence spacec0 (X, M, ||. , .||,  –

, p

) defined by Orlicz function,

Jour. of Rajasthan Academy of Physical Sciences,

(3) ( 2013) , 317-336.

K. Iseki, Mathematics on two normed spaces, Bull.

Korean Math. Soc., 13(2), (1976).

M. Açikgöz, A review on 2 – normed structures, Int.

Journal of Math. Analysis, 1(4) (2007),187 – 191.

M. Basariv and S. Altundag , On generalized

paranormed statistically convergent sequence

spaces defined by Orlicz function, Handawi. Pub. Cor.,

J. of Inequality and Applications (2009).

N.P. Pahari, On Banach space valued sequence space

l∞ (X,M,  –

, p

, L) defined by Orlicz

function , Nepal Jour. of Science and Tech. , 12

(2011) , 252-259.

R. K. Tiwari and J. K. Srivastava, On certain Banach

space valued function spaces- II,

Math. Forum, 22(2010), 1-14.

R.W. Freese and Y.J. Cho, Geometry of linear 2-

normed spaces, Nova Science Publishers,

Inc. New York (2001).

R.W. Freese, Y.J. Cho and S.S. Kim, Strictly 2–convex

linear 2–normed spaces; J. Korean Math. Soc. , 29(

(1992), 391 – 400.

S.D. Parasar and B. Choudhary, Sequence spaces

defined by Orlicz functions, Indian

J. Pure Appl. Maths., 25(4) (1994), 419–428.

S. GÄahler, 2 -metrische RÄaume und ihre

topologische struktur , Math. Nachr.,6(1963),

-148.

V.A. Khan, On a new sequence space defined by

Orlicz functions, Common. Fac. Sci.

Univ. Ank-series, 57(2) (2008), 25–33.

V.N. Bhardwaj and I. Bala, Banach space valued

sequence space M (X, p), Int. J. of Pure and

Appl. Maths., 41(5) (2007), 617–626.

Downloads

Citation Tools

How to Cite
Pahari, N. P. (2014). On Certain Topological Structures of Two - Banach Space Valued Paranormed Sequence Space  ((S, ||. , .||),  – , u – ). International Journal Of Mathematics And Computer Research, 2(01), 310-315. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/100