Keywords:-
Article Content:-
Abstract
In this paper we present the class of convergent set for the formal power series
References:-
References
J. Ribon, Holomorphic extensions of formal objects, Ann. Scuola Norm. Sup. Pisa
Cl. Sci. (5), 3 (2004), 657–680
R. P´erez-Marco, A note on holomorphic extensions, preprint, 2000
B. Al-Shutnawi, ''On convergence sets of formal power series'', PhD dissertation,
USA, 2013
B.L. Fridman, D. Ma, T.S. Neelon, ''Nonlinear convergence sets of divergent power
series'', preprint. 5. P. Lelong, ''On a problem of M.A. Zorn'', Proc. Amer. Math. Soc., 2(1951), pp 11-
N. Levenberg, R.E. Molzon,'' Convergence sets of a formal power series'', Math.
Z., 197(1988), pp 411-420.
D. Ma, T.S. Neelon, ''On convergence sets of formal power series'', preprint.
Sathaye, ''Convergence sets of divergent power series'', J. ReineAngew. Math.,
(1976), 86-98.Kokyoroku in Math. 14, Tokyo, 1982.
K. Spallek, P. Tworzewski, T. Winiarski,'' Osgood-Hartogs-theorem of mixed type'',
Math. Ann,288(1990), pp 75-88.
J. Bochnak, ''Analytic function in Banach spaces,'' Studia Math., 35(1970), pp.273–-
S. S. Abhyankar and T. T. Moh, ''A reduction theorem for divergent power series,''
J. ReineAngew. Math., 241(1970), pp.27-33.12. T. S. Neelon, ''Restrictions of power series and functions to algebraic
surfaces,''Analysis(Munich), 29(2009), pp.1-15.
B. L. Fridman and D. Ma, ''Osgood {Hartogs-type properties ofpower series and
smooth functions},'' Math.cv 251(2011), pp. 67-79.