Keywords:-

Keywords: .

Article Content:-

Abstract

In this paper we present the class of convergent set for the formal power series

References:-

References

J. Ribon, Holomorphic extensions of formal objects, Ann. Scuola Norm. Sup. Pisa

Cl. Sci. (5), 3 (2004), 657–680

R. P´erez-Marco, A note on holomorphic extensions, preprint, 2000

B. Al-Shutnawi, ''On convergence sets of formal power series'', PhD dissertation,

USA, 2013

B.L. Fridman, D. Ma, T.S. Neelon, ''Nonlinear convergence sets of divergent power

series'', preprint. 5. P. Lelong, ''On a problem of M.A. Zorn'', Proc. Amer. Math. Soc., 2(1951), pp 11-

N. Levenberg, R.E. Molzon,'' Convergence sets of a formal power series'', Math.

Z., 197(1988), pp 411-420.

D. Ma, T.S. Neelon, ''On convergence sets of formal power series'', preprint.

Sathaye, ''Convergence sets of divergent power series'', J. ReineAngew. Math.,

(1976), 86-98.Kokyoroku in Math. 14, Tokyo, 1982.

K. Spallek, P. Tworzewski, T. Winiarski,'' Osgood-Hartogs-theorem of mixed type'',

Math. Ann,288(1990), pp 75-88.

J. Bochnak, ''Analytic function in Banach spaces,'' Studia Math., 35(1970), pp.273–-

S. S. Abhyankar and T. T. Moh, ''A reduction theorem for divergent power series,''

J. ReineAngew. Math., 241(1970), pp.27-33.12. T. S. Neelon, ''Restrictions of power series and functions to algebraic

surfaces,''Analysis(Munich), 29(2009), pp.1-15.

B. L. Fridman and D. Ma, ''Osgood {Hartogs-type properties ofpower series and

smooth functions},'' Math.cv 251(2011), pp. 67-79.

Downloads

Citation Tools

How to Cite
Shutnawi, B. A., & Zannon, M. (2015). Convergence Classes. International Journal Of Mathematics And Computer Research, 3(08), 1106-1109. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/131