Keywords:-

Keywords: Kiefer bound; variance bound; minimum variance unbiased estimator; non regular and truncated distribution; parametric function; ideal estimation equation.

Article Content:-

Abstract

We consider the densities of truncated distributions in their natural form. In the estimation of parametric functions involved in these densities and their rth powers, necessary prior densities are identified and attainable Kiefer bounds on variance of unbiased estimators are computed. The problem of estimation of these Kiefer bounds [which is same as estimating variance of UMVU estimators] is considered. It is shown that the variances of UMVU estimators of these Kiefer bounds have attainable Kiefer bounds. Results are illustrated by examples.

References:-

References

Akahira, M. and Ohyauchi, N. (2007). The Asymptotic Bound by the Kiefer-Type Information Inequality

and Its Attainment. Communications in Statist.- Theo. and Meth., 36; 11, 2049-2059.

Bartlett, M.S.(1982).The Ideal Estimation Equation. Essays in Statistical Science. Journal of Applied

Probability , I9A. 187-200. Papers in Honor of P.A.P. Moran.

Blischke, W.R., Truelove, A.J., Mundle, P.B.(1969). On non-regular estimation I. variance bounds for

estimators of location parameters. J. Amer. Statist. Assoc. 64,1056-1072.

Blischke, W.R. (1974). On non-regular estimation II.Estimation of the location parameter of the gamma

and Weibull distributions. Comm. Statist.3,1109-1129.

Chapman, D.G. and Robbins,H.(1951). Minimum variance estimation without regularity assumptions.

Ann.Math. Statist. 22,581-586.

Cram r, H.(1946). Mathematical methods of Statistics. Princeton Univ. Press, Princeton, N.J.

Endre Csáki (2005).István Vincze (1912-1999) and his contribution to lattice path combinatorics and

statistics. Journal of Statistical Planning and Inference.135,3-17.

Fraser, D.A.S. and Guttman, I (1952). Bhattacharyya bounds without regularity assumptions. Ann. Math.

Statist.23,629-632.

Fréchet,M.(1943).Sur 1’extension de certaines evaluations statistiques au cas de petits echantillons.

Rev.Inst. Internat.Statist.11,182-205.

Hammersley, J.M.(1950). On estimating restricted parameters. J. Roy. Statist. Soc. Ser.B.12, 192-240.

Jadhav, D. B. and Prasad, M.S.(1986-87).Some Results On Kiefer Bound. Journal of Shivaji

University(Science),23,209-214.

Kiefer, J.(1952).On minimum variance estimators. Annals of Math. Statistics, 23, 627-629.Polfeldt,T.(1970).Asymptotic results in Non-Regular Estimation.Skand.Akt.1-2 suppl.,1-78.

Rao,C.R.(1945). Information and accuracy attainable in the estimation of statistical parameters. Bull . of

Calcutta Maths. 37,81-91.

Vincze, I. (1979). On Cram r- Fr chet -Rao inequality in the non-regular case. In:Jurečková,J.

(Ed.),Contributions to statistics. Journal of Jaroslav Hajek Memorial Volume. Reidel Pub.Co.

Dordrecht,pp.253-262.

Downloads

Citation Tools

How to Cite
Jadhav, D., & Shanubhogue, A. (2014). Kiefer Bound in Truncated Distributions. International Journal Of Mathematics And Computer Research, 2(06), 469-483. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/153