Keywords:-
Article Content:-
Abstract
In this paper, we study the numerical solution of Fuzzy Differential Equations by using predictor-corrector method which is obtained by combining Adams-Bashforth three-step method and Adams-Moulton two-step method. This method is adopted to solve the dependency problem in fuzzy computation. In addition, these methods are illustrated by solving two fuzzy cauchy problems.
References:-
References
S. Abbasbandy, T. Allahviranloo, Numerical solutions of fuzzy differential equations by Taylor
Method, Computational Methods in Applied Mathematics, 2 (2002), 113-124.
S. Abbasbandy, T. Allahviranloo, Numerical solution of Fuzzy differential equation by Runge-
Kutta method, Nonlinear Studies, 11, (2004), 117-129.
M. Ahamad, M. Hasen, A new approach to incorporate uncertainity into Euler method, Applied
Mathematical Sciences , 4(51), (2010), 2509-2520.
M. Ahamed, M. Hasan, A new fuzzy version of Euler's method for solving diffrential equations
with fuzzy initial values, Sians Malaysiana, 40, (2011), 651-657.
M. Ahmad, M. Hasan, Incorporating optimization technique into Zadeh's extension principle for
computing non-monotone functions with fuzzy variable, Sains Malaysiana, 40, (2011) 643-650.
N. Z. Ahmad, H. K. Hasan, B. De Baets, A new method for computing continuous function
with fuzzy variable, Journal of Applied Sciences, 11(7) ,(2011), 1143-1149.
A. H. Alsonosi Omar, Y. Abu Hasan, Numerical solution of fuzzy differential equations and
the dependency problem, Applied Mathematics and Computation, 219, (2012), 1263-1272.
T. Allahviranloo, N. Ahmady, E. Ahmady, Numerical solutions of fuzzy differential equations
by predictor-corrector method, Information Sciences 177(7) (2007) 1633-1647.
T. Allahviranloo, N. Ahmady, E. Ahmady, Erratum to ``Numerical solutions of fuzzy
differential equations by predictor-corrector method, Inform. Sci. 177(7) (2007) 1633-1647]",
Information Sciences 178 (2008) 1780-1782.
Barnabas Bede, Note on ``Numerical solutions of fuzzy differential equations by predictorcorrector
method", Information Sciences 178 (2008) 1917-1922.
A. Bonarini, G. Bontempi, A Qualitative simulation approach for fuzzy dynamical models,
ACM Trans. Model. Comput. Simulat, 4, (1994), 285-313.
R. Brent, Algorithms for Minimization without Derivatives, Dover Pubns, 2002.
J. J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Sets and Systems,110, (2000) 43-
D. Dubois, H. Prade, Towards fuzzy differential calculus part 3: differentiation, Fuzzy Sets and
Systems, 8, (1982), 225-233.
E. Isaacson, H. B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.
Kaleva Osmo, Fuzzy differential equations, Fuzzy Sets and Systems 24 (1987) 301-317.
O. Kaleva, Interpolation of fuzzy data, Fuzzy Sets and Systems 60(1994) 63-70.
M. Ma, M. Friedman, A. Kandel, Numerical solutions of fuzzy differential equations, Fuzzy
Sets and Systems 105 (1999) 133-138.
R. E. Moore, Interval Analysis, Parentice-Hall, Englewood cliffs, N.J 1966.
S. Palligkinis, G. Papageorgiou, I. Famelis, Runge-Kutta methods for fuzzy differential
equations, Applied Mathematics and Computation 209 (2009) 97-105.
S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24(3) (1987) 319-330.
L. A. Zadeh, Fuzzy Sets, Information and Control 8(1965) 338-353.