Keywords:-

Keywords: Cycle, vertex-edge dominating sets, vertex-edge domination polynomial, vertex-edge domination number.

Article Content:-

Abstract

Let G = (V, E) be a simple Graph. A set S  V(G) is a vertex-edge dominating set (or simply ve-dominating set) if for all edges e  E(G), there exist a vertex v  S such that v dominates e. In this paper, we study the concept of vertex-edge domination polynomial of the cycle Cn. The vertex-edge domination polynomial of Cn is Dve(Cn, x) = |V(G)| n 4 i        dve(Cn, i)xi, where dve(Cn, i) is the number of vertex-edge dominating sets of Cn with cardinality i. We obtain some properties of Dve(Cn, x) and its co-efficients. Also, we calculate the recursive formula to derive the vertex-edge domination polynomials of cycles.

References:-

References

S. Alikhani and Y.H. Peng, Domination sets and Domination polynomials of cycles, Global Journal of pure and

Applied Mathematics vol.4 No.2 (2008).

S. Alikhani and Y.H. Peng, Dominating sets and Domination polynomials of paths, International journal of Mathematics and

mathematical sciences (2009).

S. Alikhani and Y.H. Peng, Introduction to Domination polynomial of a graph, arXiv: 0905.225 [v] [math.co] 14 may

(2009).

J.A. Bondy and U.S.R. Murty, Graph theory with Applications, Elsevier science publishing co, sixth printing (1984).

G. Chartrand and P. Zhang, Introduction to Graph theory, McGraw-Hill, Boston, Mass, USA (2005).

T.W. Haynes, S.T. Hedetniemi, P.J. Slater. Fundamentals of Domination in Graphs, Marcel Dekker, Newyork

(1998).

A. Vijayan and T. Nagarajan. Vertex-Edge Dominating sets and Vertex-Edge Domination Polynomials of paths.

International Journal of Mathematics Trends and Technology volume 4, Dec (2013), 266-279.

A. Vijayan and T.Nagarajan Vertex-Edge Domination polynomials of Graphs. International Journal of mathematical

Archive 5(2), (2014), 281-292.

Downloads

Citation Tools

How to Cite
Vijayan, A., & Nagarajan, T. (2014). Vertex-Edge Dominating Sets and Vertex-Edge Domination Polynomials of Cycles. International Journal Of Mathematics And Computer Research, 2(08), 547-564. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/160