Keywords:-

Keywords: New generalized (G /G) -expansion method, the fifth-order KdV equation, homogeneous balance, traveling wave solutions, nonlinear evolution equations.

Article Content:-

Abstract

Mathematical modeling of numerous physical phenomena often leads to high-dimensional partial differential equations and thus the higher dimensional nonlinear evolution equations come into further attractive in many branches of physical sciences. In this works, we construct the traveling wave solutions involving parameters of the fifth-order KdV equation by using the new approach of generalized (G /G)- expansion method. Abundant traveling wave solutions with arbitrary parameters are successfully obtained by this method and the wave solutions are expressed in terms of the hyperbolic, trigonometric, and rational
functions. It is shown that the new approach of generalized (G /G) -expansion method is a powerful and concise mathematical tool for solving nonlinear partial differential equations.

References:-

References

E.G. Fan, Two new applications of the homogeneous balance method. Phys. Lett. A. 265 (2000) 353-357.

A.M. Wazwaz, The tanh method for generalized forms of nonlinear heat conduction and Burgers–Fisher

equations, Appl. Math.Comput. 169 (2005) 321–338.

E. Fan, Extended tanh-function method and its applications to nonlinear equations. Phys Lett A 277(4− 5)

(2000) 212-218.

S.A. El-Wakil, M.A. Abdou, New exact travelling wave solutions using modified extended tanh-function

method. Chaos Solitons Fractals 31(4) (2007) 840-852.

J.H. He and X.H. Wu, Exp-function method for nonlinear wave equations, Chaos, Solitons Fract. 30

(2006) 700-708.

M.A. Akbar and N.H.M. Ali, New Solitary and Periodic Solutions of Nonlinear Evolution Equation by

Exp-function Method, World Appl. Sci. J., 17(12) (2012) 1603-1610.

A.M. Wazwaz, A sine-cosine method for handle nonlinear wave equations, Applied Mathematics and

Computer Modeling, 40 (2004) 499-508.

M. Usman, A. Nazir, T. Zubair, I. Rashid, Z. Naheed S.T. Mohyud-Din, Solitary wave solutions of

(3+1)-dimensional Jimbo Miwa and Pochhammer-Chree equations by modified Exp-function method,

Int. J. Modern Math. Sci. 5(1) (2013) 27-36.

Z. Yan and H. Zhang, New explicit solitary wave solutions and periodic wave solutions for Whitham

Broer-Kaup equation in shallow water, Physics Letters. A, vol. 285 no.5-6 (2001) 355-362.10. D. Liu, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos solitons Fractals,

(2005) 1373-85.

Y. Chen and Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant

families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation, Chaos

solitons Fractals, 24 (2005) 745-57.

A.M. Wazwaz, Multiple-soliton solutions for a (3+1)-dimensional generalized KP equation, Commun

Nonlinear Sci Numer Simulat 17 (2012) 491–495.

T.L. Bock and M.D. Kruskal, A two-parameter Miura transformation of the Benjamin-One equation,

Phys. Lett. A 74 (1979) 173-176.

M.L. Wang, X.Z. Li and J. Zhang, The (G /G) -expansion method and traveling wave solutions of

nonlinear evolution equations in mathematical physics, Phys. Lett. A, 372 (2008) 417-423.

A. Bekir, Application of the (G /G) -expansion method for nonlinear evolution equations, Phys. Lett. A

(2008) 3400-3406.

E.M.E. Zayed, The (G /G) -expansion method and its applications to some nonlinear evolution

equations in the mathematical physics, J. Appl. Math. Comput., 30 (2009) 89-103.

S. Zhang, J. Tong and W. Wang, A generalized (G /G) -expansion method for the mKdV equation with

variable coefficients, Phys. Lett. A, 372 (2008) 2254-2257.

M.A. Akbar, N.H.M. Ali and E.M.E. Zayed, A generalized and improved (G /G) -expansion method for

nonlinear evolution equations, Math. Prob. Engr., Vol. 2012 (2012) 22 pages. doi: 10.1155/2012/459879.

M.N. Alam, M.A. Akbar and S.T. Mohyud-Din, A novel (G /G) -expansion method and its application

to the Boussinesq equation, Chin. Phys. B, Article ID 131006 (accepted for publication).

M.N. Alam and M.A. Akbar, Traveling wave solutions of the nonlinear (1+1)-dimensional modified

Benjamin-Bona-Mahony equation by using novel (G /G) -expansion, Physical Review & Research

International, 4(1), 2014, 147-165.

A.J.M. Jawad, M.D. Petkovic and A. Biswas, Modified simple equation method for nonlinear evolution

equations, Appl. Math. Comput., 217 (2010) 869-87722. K. Khan, M.A. Akbar and M.N. Alam, Traveling wave solutions of the nonlinear Drinfel’d-Sokolov-

Wilson equation and modified Benjamin-Bona-Mahony equations, J. Egyptian Math. Soc., 21, 2013,

-240, http://dx.doi.org/10.1016/j.joems.2013.04.010.

J. Zhang, F. Jiang and X. Zhao, An improved (G /G) -expansion method for solving nonlinear evolution

equations, Int. J. Com. Math., 87(8) (2010) 1716-1725.

M.J. Ablowitz and P.A. Clarkson, Soliton, nonlinear evolution equations and inverse scattering

(Cambridge University Press, New York, 1991).

D. Liu, Jacobi elliptic function solutions for two variant Boussinesq equations, Chaos solitons Fractals,

(2005) 1373-85.

Y. Chen and Q. Wang, Extended Jacobi elliptic function rational expansion method and abundant

families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation, Chaos

solitons Fractals, 24 (2005) 745-57.

H. Naher and F.A. Abdullah, New approach of (G /G) -expansion method and new approach of

generalized (G /G) -expansion method for nonlinear evolution equation, AIP Advances 3, 032116 (2013)

DOI: 10. 1063/1.4794947.

M.N. Alam, M.A. Akbar and K. Khan, Some new exact traveling wave solutions to the (2+1)-

dimensional breaking soliton equation, World Applied Sciences Journal, 25(3), 2013, 500-523.

M.N. Alam and M.A. Akbar, Exact traveling wave solutions of the KP-BBM equation by using the new

generalized (G /G) -expansion method, SpringerPlus, 2(1), 2013, 617. DOI: 10.1186/2193-1801-2-617.

M.N. Alam and M.A. Akbar, Traveling wave solutions of nonlinear evolution equations via the new

generalized (G /G) -expansion method, Universal Journal of Computational Mathematics, 1(4), 2013,

-136 DOI: 10.13189/ujcmj.2013.010403.

M.N. Alam, M.A. Akbar and H.O. Roshid, Study of nonlinear evolution equations to construct traveling

wave solutions via the new approach of generalized (G /G) -expansion method, Mathematics and

Statistics, 1(3), 2013, 102-112, DOI: 10.13189/ms.2013.010302.

G. Adomain, Solving frontier problems of physics: The decomposition method, Kluwer Academic

Publishers, Boston, 1994.

A.M. Wazwaz, Partial Differential equations: Method and Applications, Taylor and Francis, 2002.

J.B. Li and Z.R. Liu, Smooth and non-smooth traveling waves in a nonlinearly dispersive equation, Appl.

Math. Model. 25 (2000) 41-56.

Z.R. Liu and T.F. Qian, Peakons and their bifurcation in a generalized Camassa-Holm equation, Int. J.

Bifur. Chaos 11 (2001) 781-792.

J.S. Russell, Report on waves, in proceedings of the 14th Meeting of the British Association for the

Advancement of Science, 1844.

J. L. Hu, Explicit solutions to three nonlinear physical models. Phys. Lett. A, 287 (2001): 81-89.

J. L. Hu, A new method for finding exact traveling wave solutions to nonlinear partial differential

equations. Phys. Lett. A, 286 (2001): 175-179.

A.H. Salas and C.A. Gomez, Application of the Cole-Hopf transformation for finding exact solutions to

several forms of the seventh-order KdV equation, Mathematical Problems in Engineering, Art. ID

(2010) 14 pages.

H. Gao and R.X. Zhao, New application of the (G /G) -expansion method to higher-order nonlinear

equations, Applied Mathematics and Computation 215 (2009) 2781-2786.

Downloads

Citation Tools

How to Cite
Hasan, S. S., Alam, M. N., Uddin, M. S., Hasan, M. S., & Akbar, M. A. (2013). Exact traveling wave solutions of the fifth-order KdV equation via the new approach of generalized (G /G) -expansion method. International Journal Of Mathematics And Computer Research, 1(11), 283-302. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/238