Keywords:-

Keywords: Metaheuristic, Alienor method, MOMA method, Optimization, mul t iobject ive.

Article Content:-

Abstract

Our previous work has proved the performance of the MOMA method to solve multiobjective optimization problems [1]. More precisely the best approximation of the Pareto optimal solutions of linear and nonlinear probl ems in continuous variables [2,3]. But the results were mixed on some kids of problems. Thus, this present work presents an improvement of the performances of the MOMA  method to the resolution of problems of multiobjective optimization. This improvement consists in remplacing in the MOMA method, OPO (Operator Preserving the Optimum) by the strategy of the simplex algorithm of Nelder-Mead. This new procedure has been named MOMA-Plus[1] and makes it possible to obtain solutions at least as good as those of MOMA. Numerical exper iment s on a dozen benchmarks proved the effectiveness of this new version, MOMA-Plus. 2010 Mathematics Subject Classification: 90C29, 90C30, 49M30, 49M37

References:-

References

Kounhinir Som´e. ”Nouvelle m´ethode m´etaheuristique bas´ee sur la m´ethode Ali´enor pour

la r´esolution des probl`emes d’optmisation multiobjectif : Th´eorie et Applications.”, Th`ese de

doctorat unique, 2013, Universit´e de Ouadougou, Burkina Faso.

Kounhinir Som´e, Oliver Wenddabo Sawadogo, Berthold Ulungu, Blaise Som´e. ”A theoretical

f o u n d a t i o n m e t a h e u r i s t i c method to solve some multiobjective optimization problems,

International Journal of Applied Mathematical Research, volume 2 (4) (2013), page 464-475.

Kounhinir Som´e, Berthold Ulungu, Ibrahim Himidi Mohamed, Blaise Som´e. ”A new Method

for solving NonLinear Multiobjective Optimization Problems, JP Journal of Mathematical

Sciences, Volume 2, Issue1 et 2, 2011, page 1-18.

Mohsen EJDAY, Optimisation multiobjectif à base de m´etamod`ele pour le proc´ed´es de mise en

forme. Th`ese de doctorat, Paris Tech, France, 2011.

C. A. Coello coello, G. B. Lamont, D. A. V. Veldhuizen, Evolut ionna r y algorithme f o r

solving multiobjective probl em, s e cond Edi t ion, Springer, 2007.

Balira O.Konf´e, Nouvelles m´ethodes math´ematiques Alienor et Adomian, pour la biom´edecine.

Th`ese de doctorat pr´esent´ee `a l’Universit´e de Ouagadougou 2004-2005.

T. Benneoula, and Y. Cherruault, Alienor method for Global optimization with a large number

of variable, Kybernetes 34(7/8)(2005), 1104-1111.

Y. Cherruault, G. Mora, O p t i m i z a t i o n global: Th´eorie des courbes α−denses, Ed.

Economica, 2005. 9. B.O.Konf´e, Y.Cherruaul t , B.Som´e, T.Benneouala, A new optimization preserving

operator, applied to global optimization. Kybernet Mars 2004.

M. A. Luersen, GBNM: Un algorithme d’optimisation par la recherche directe - Application `a

la conception de Monopalmes de nage, th`ese de doctoract, l’Universit´e de Rouen, France

K. Deb, Multi-Objective Optimization using Evolutionary Al g o r i t hms , Edited by Wiley and

sons, Chichester, 2001.

Jacques Teghem, Programmation lin´eaire. Edition de l’Universit´e de Bruxelles (´edition

Ellipse), 1996.

Steur R, Multicriteria optimization: Theorie, computation and application, Wiley, New York.

Edition 1986.

J. Nelder, R. Mead, A simplex method for function minimization, Computer Journal, vol. 7,

n◦4, 1965, p.308-31

Downloads

Citation Tools

How to Cite
Some, K., Compaore, A., Sawadogo, W. O., Ulungu, B., & Some, B. (2017). Improving of Numerical Performance of The MOMA Method. International Journal Of Mathematics And Computer Research, 5(05), 1817-1827. Retrieved from https://ijmcr.in/index.php/ijmcr/article/view/25