Keywords:-
Article Content:-
Abstract
The aim of this paper is to evaluate the complexity of the recursive approach to the formation of a voxel array of graphical image-models for a function-defined geometric objects. The dependence of the dimension and size of the voxel array on the dimension of the function and the number of recursion steps is determined. The dependence of voxel resolution on the size of the function research area and the number of recursion steps is considered. The dependence of the number of generated graphical image-models (M-images) and the amount of memory for their storage on the dimension of the function and the number of recursion steps are calculated.
References:-
References
Rvachev V.L., Tolok A.V., Uvarov R.A., & Sheyko T.Y. (2000). New approaches to the construction of equations of three-dimensional loci using R-functions. Visnyk Zaporizʹkoho Derzhavnoho universytetu: Zbirnyk naukovykh statey. Fizyko-matematychni nauky, No.2, pp.119–131.
Tolok A.V., Myltsev A.M. & Korohod V.L. (2006). Analytical modeling based on graphic transformations in the RANOK system. Visnyk Zaporizʹkoho natsionalʹnoho universytetu: Zbirnyk naukovykh statey. Fizyko-matematychni nauky, No.1, pp.124–133.
Myltsev O.M. (2018). Analysis of the functions of three variables based on voxel structures of images-models in the system “RANOK”. Visnyk Zaporizʹkoho natsionalʹnoho universytetu: Zbirnyk naukovykh statey. Fizyko-matematychni nauky, No.1, pp.89–97.
Myltsev O.M. Kondratieva N.O. & Leontieva V.V. (2018). Functional model of the basic business processes of the “RANOK” system. Visnyk Zaporizʹkoho natsionalʹnoho universytetu: Zbirnyk naukovykh statey. Fizyko-matematychni nauky, No.2, pp.88–99.
Morozov D.N., Gnezdovskiy A.V., Myltsev A.M., & Tolok A.V. (2010). Cognitive computer graphics in the process of solving optimization problems of mathematical modeling. Prikladna geometríya ta ínzhenerna grafíka, Issue 86, pp.112–117.