Keywords:-

Keywords: Poisson distribution, Exponential, Reliability, Hazard rate.

Article Content:-

Abstract

In this study, we have established a new three-parameter Poisson Exponential Power distribution using the Poisson-G family of distribution. We have presented the mathematical and statistical properties of the proposed distribution including probability density function, cumulative distribution function, reliability function, hazard rate function, quantile, the measure of skewness, and kurtosis. The parameters of the new distribution are estimated using the maximum likelihood estimation (MLE) method, and constructed the asymptotic confidence intervals also the Fisher information matrix is derived analytically to obtain the variance-covariance matrix for MLEs. All the computations are performed in R software. The potentiality of the proposed distribution is revealed by using some graphical methods and statistical tests taking a real dataset. We have empirically proven that the proposed distribution provided a better fit and more flexible in comparison with some other lifetime distributions.

References:-

References

Adamidis, K., Loukas, S., 1998. A lifetime distribution with decreasing failure rate. Statistics and Probability Letters, 39, 35–42.

Alkarni, S. and Oraby, A. (2012). A compound class of Poisson and lifetime distributions, J. Stat. Appl. Pro., 1(1), 45-51.

Bader, M. G., & Priest, A. M. (1982). Statistical aspects of fiber and bundle strength in hybrid composites. Progress in science and engineering of composites, 1129-1136.

Barreto-Souza, W. and Cribari-Neto, F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79, 2493-2500.

Cancho, V. G., Louzada-Neto, F. and Barriga, G. D. C. (2011). The Poisson-exponential lifetime distribution. Computational Statistics and Data Analysis, 55, 677-686.

Ghitany, M. E., Atieh, B., & Nadarajah, S. (2008). Lindley distribution and its application. Mathematics and computers in simulation, 78(4), 493-506.

Ghitany, M. E., Alqallaf, F., Al-Mutairi, D. K., & Husain, H. A. (2011). A two-parameter weighted Lindley distribution and its applications to survival data. Mathematics and Computers in simulation, 81(6), 1190-1201.

Ghitany, M. E., Al-Mutairi, D. K., and Aboukhamseen, S. M., (2013). Estimation of the reliability of a stress-strength system from power Lindley distributions, Communications in Statistics - Simulation and Computation, 78, 493-506.

Gupta, R. D., & Kundu, D. (1999). Theory & methods: Generalized exponential distributions. Australian & New Zealand Journal of Statistics, 41(2), 173-188.

Hyndman. R.J. & Fan, Y. (1996). Sample quantiles in statistical packages. The American Statistician, 50(4): 361-365.

Joshi, R. M. (2015). An extension of exponential distribution: Theory and Applications. J. Nat. Acad. Math, 29, 99-108.

Joshi, R. K. & Kumar, V. (2020). Lindley exponential power distribution with Properties and Applications. International Journal for Research in Applied Science & Engineering Technology (IJRASET), 8(10), 22-30.

Kaviayarasu, V. & Fawaz, P. (2017). A Reliability Sampling Plan to ensure Percentiles through Weibull Poisson Distribution, International Journal of Pure and Applied Mathematics, 117(13), 155-163.

Kenney, J. F. & Keeping. (1962). E. S. Mathematics of Statistics. (3rd ed.). Chapman & Hall Ltd, New Jersey.

Kus, C. (2007). A new lifetime distribution. Computational Statistics and Data Analysis 51, 4497-4509.

Kyurkchiev, V. E. S. S. E. L. I. N., Kiskinov, H. R. I. S. T. O., Rahneva, O. L. G. A., & Spasov, G. E. O. R. G. I. (2018). A Note on the Exponentiated Exponential-Poisson Software Reliability Model. Neural, Parallel, and Scientific Computations, 26(3), 257-267.

Louzada-Neto, F., Cancho, V.G. & Barriga, G.D.C. (2011). The Poisson–exponential distribution: a Bayesian approach, Journal of Applied Statistics, 38:6, 1239-1248.

Louzada, F., Luiz Ramos, P., & Henrique Ferreira, P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrences. Communications in Statistics-Simulation and Computation, 49(4), 1024-1043.

Lu, W. & Shi, D. (2012). A new compounding life distribution: the Weibull–Poisson distribution, Journal of Applied Statistics, 39:1, 21-38.

Percontini, A., Blas, B., & Cordeiro, G. M. (2013). The beta weibull poisson distribution. Chilean journal of Statistics, 4(2), 3-26.

Mahmoudi, E., & Sepahdar, A. (2013). Exponentiated Weibull–Poisson distribution: Model, properties and applications. Mathematics and computers in simulation, 92, 76-97.

Moors, J. J. A. (1988). A quantile alternative for kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician), 37(1), 25-32.

Morais, A. & Barreto-Souza,W., (2011). A compound class of Weibull and power series distributions. Computational Statistics and Data Analysis, 55, 1410–1425.

Nadarajah, S., & Kotz, S. (2006). The beta exponential distribution. Reliability engineering & system safety, 91(6), 689-697.

Nichols, M. D., & Padgett, W. J. (2006). A bootstrap control chart for Weibull percentiles. Quality and reliability engineering international, 22(2), 141-151.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Ristić, M. M., & Nadarajah, S. (2014). A new lifetime distribution. Journal of Statistical Computation and Simulation, 84(1), 135-150.

Rizzo, M. L. (2008). Statistical computing with R. Chapman & Hall/CRC.

Rodrigues, G.C., Louzada, F. & Ramos, P.L. (2018). Poisson–exponential distribution: different methods of estimation, Journal of Applied Statistics, 45(1), 128-144.

Smith, R.M. and Bain, L.J. (1975). An exponential power life-test distribution, Communications in Statistics, 4, 469-481.

Srivastava, A. K., & Kumar, V. (2011). Analysis of software reliability data using exponential power model. IJACSA Editorial.

Tang, Y., Xie, M., & Goh, T. N. (2003). Statistical analysis of a Weibull extension model. Communications in Statistics-Theory and Methods, 32(5), 913-928.

Downloads

Citation Tools

How to Cite
Joshi, R. K., & Kumar, V. (2020). Poisson Exponential Power Distribution: Properties and Application. International Journal Of Mathematics And Computer Research, 8(11), 2152-2158. https://doi.org/10.47191/ijmcr/v8i11.01