Keywords:-
Article Content:-
Abstract
The present paper is a study of the conformal transformation of the Lagrange space with (γ, β)-metric. The conformal transformation of the spray coefficient and Riemann curvature are express in Lagrange space with (γ, β)-metric. Further, find out the condition that a conformal transformation of Lagrange space with (γ, β)-metric is locally dually flat if and only if the transformation is a homothety. Moreover, the conditions for the transform metrics to be Einstein and isotropic mean Berwald curvature are also find.
References:-
References
S. K. Shukla and P. N. Pandey,(2013), Lagrange Spaces with (γ, β)-Metric, Hindawi Publishing Corporation., 1-7,https://doi.org/10.1155/2013/106393.
V. K. Tripathi,(2014), Finslerian hypersurface of a finsler space with (γ, β) - metric, Journal of dynamical systems and geometric theories.,12(1), 19-27.
T. N. Pandey and V. K. Chaubey,(2011) ,The variational problem in Lagrange space endowed with (γ, β)-metric, International journal of pure and applied mathematics.,71(4), 633-638,https://doi.org/10.1080/1726037X.2014.917829,
M. M. Numata,(1979), On Finsler space with (γ, β) -metric, Tensor N. S.,153-162.
D. Bao, S. S.(2000) , An introduction to Riemannian-Fisler geometry,Vergal New York: Springer, DOI 10.1007/978-1-4612-1268-3.
T. N. Pandey and V. K. Chaubey,(2013), On Finsler space with (γ, β)-metric Geodesic connection and scalar curvature, Tensor N. S., 74, 126-134.
M. Matsumoto and S. Numata,(1979), On Finsler space with cubic metric, Tensor N. S., 33, 153-162.
T. N. Pandey and V. K. Chaubey,(2011) , Theory of Finsler space with (γ, β)- metrics, Bulletin of the Transilvania University of Brasova, 4(53),43-56.
M.Matsumoto,(1986).,Foundation of Finsler Geometry and Spacial Finsler Spaces, Kaiseisha Press Saikawa, Otsu,Japan,https://catalog.hathitrust.org/Record/000839756.
M. Hashiguchi,(1976), On conformal transformation of Finsler metrics, J. Math. Kyoto University,16, 25-50.
A. Tayebi, M. Shahbazi Nai,(2019), On conformally flat fourth root (α, β)- metrics, Diffr. Geom. Appl., 62, 253-266.
S. I. Amari, H. Nagaoka,(2000), Methods of Information Geometry,AMS Transformation of Math. Monographs, Oxford University.
Z. Shen,(2006), Riemannian-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27, 73-94.