Keywords:-

Keywords: Conformal transformation, Homothety, Lagrange space, Locally dually flat, (γ, β)-metric.

Article Content:-

Abstract

The present paper is a study of the conformal transformation of the Lagrange space with (γ, β)-metric. The conformal transformation of the spray coefficient and Riemann curvature are express in Lagrange space with (γ, β)-metric. Further, find out the condition that a conformal transformation of Lagrange space with (γ, β)-metric is locally dually flat if and only if the transformation is a homothety. Moreover, the conditions for the transform metrics to be Einstein and isotropic mean Berwald curvature are also find.

References:-

References

S. K. Shukla and P. N. Pandey,(2013), Lagrange Spaces with (γ, β)-Metric, Hindawi Publishing Corporation., 1-7,https://doi.org/10.1155/2013/106393.

V. K. Tripathi,(2014), Finslerian hypersurface of a finsler space with (γ, β) - metric, Journal of dynamical systems and geometric theories.,12(1), 19-27.

T. N. Pandey and V. K. Chaubey,(2011) ,The variational problem in Lagrange space endowed with (γ, β)-metric, International journal of pure and applied mathematics.,71(4), 633-638,https://doi.org/10.1080/1726037X.2014.917829,

M. M. Numata,(1979), On Finsler space with (γ, β) -metric, Tensor N. S.,153-162.

D. Bao, S. S.(2000) , An introduction to Riemannian-Fisler geometry,Vergal New York: Springer, DOI 10.1007/978-1-4612-1268-3.

T. N. Pandey and V. K. Chaubey,(2013), On Finsler space with (γ, β)-metric Geodesic connection and scalar curvature, Tensor N. S., 74, 126-134.

M. Matsumoto and S. Numata,(1979), On Finsler space with cubic metric, Tensor N. S., 33, 153-162.

T. N. Pandey and V. K. Chaubey,(2011) , Theory of Finsler space with (γ, β)- metrics, Bulletin of the Transilvania University of Brasova, 4(53),43-56.

M.Matsumoto,(1986).,Foundation of Finsler Geometry and Spacial Finsler Spaces, Kaiseisha Press Saikawa, Otsu,Japan,https://catalog.hathitrust.org/Record/000839756.

M. Hashiguchi,(1976), On conformal transformation of Finsler metrics, J. Math. Kyoto University,16, 25-50.

A. Tayebi, M. Shahbazi Nai,(2019), On conformally flat fourth root (α, β)- metrics, Diffr. Geom. Appl., 62, 253-266.

S. I. Amari, H. Nagaoka,(2000), Methods of Information Geometry,AMS Transformation of Math. Monographs, Oxford University.

Z. Shen,(2006), Riemannian-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27, 73-94.

Downloads

Citation Tools

How to Cite
Chandra, L., & Yadav, G. P. (2021). On Conformal Transformation of Lagrange Space with (γ, β)-Metric. International Journal Of Mathematics And Computer Research, 9(2), 2178-2186. https://doi.org/10.47191/ijmcr/v9i2.01