Keywords:-

Keywords: Bayesian method, Weibull-Lomax distribution, quasi and gamma priors, squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions

Article Content:-

Abstract

In this paper, the Weibull-Lomax distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.

References:-

References

Tahir, M.H, Cordeiro, G.M. and Zubair, M., (2015): “The Weibull-Lomax distribution: properties and applications”. Hacettepe Journal of Mathematics and Statistics, Vol. 44(2), 461480.

Zellner, A., (1986): “Bayesian estimation and prediction using asymmetric loss functions”. Jour. Amer. Stat. Assoc., 91, 446-451.

Basu, A. P. and Ebrahimi, N., (1991): “Bayesian approach to life testing and reliability estimation using asymmetric loss function”. Jour. Stat. Plann. Infer., 29, 21-31.

Norstrom, J. G., (1996): “The use of precautionary loss functions in Risk Analysis”. IEEE Trans. Reliab., 45(3), 400-403.

Calabria, R., and Pulcini, G. (1994): “Point estimation under asymmetric loss functions for left truncated exponential samples”. Comm. Statist. Theory & Methods, 25 (3), 585-600.

D.K. Dey, M. Ghosh and C. Srinivasan (1987): “Simultaneous estimation of parameters under entropy loss”. Jour. Statist. Plan. And infer., 347-363.

D.K. Dey, and Pei-San Liao Liu (1992): “On comparison of estimators in a generalized life Model”. Microelectron. Reliab. 32 (1/2), 207-221.

Wasan, M.T., (1970): “Parametric Estimation”. New York: Mcgraw-Hill.

Al-Bayyati, (2002): “Comparing methods of estimating Weibull failure models using simulation”. Ph.D. Thesis, College of Administration and Economics, Baghdad University, Iraq.

Downloads

Citation Tools

How to Cite
Rao, A. K., & Pandey, H. (2021). Estimation of Scale Parameter of Weibull-Lomax distribution via Bayesian Approach. International Journal Of Mathematics And Computer Research, 9(5), 2293-2302. https://doi.org/10.47191/ijmcr/v9i5.03