Keywords:-
Article Content:-
Abstract
Discuss Galerkin approximation to a type of second order nonlinear hyperbolic partial differential equations. Provide continuous time Galerkin approximation and fully discrete Galerkin approximations and derive optimal L2-error estimates for continuous time and fully discrete Calerkin approximations, separately.
References:-
References
Repin, S. 2017, “One hundred years of the Galerkin method”, Computational Methods and Applied Mathematics, 17-3, 351-357.
Alhammali, A. and Peszynska, M. 2020,“Numerical analysis of a parabolic variational inequality system modeling biofilm growth at the porescale”. Numerical Methods for Partial Differential Equations, 36-5, 941-971.
Chaudhary, S. 2018,“Crank-Nicolson-Galerkin finite element scheme for nonlocal coupled parabolic problem using the Newton method”, Mathematical Methods in the Applied Sciences41-2, 724-749.
Pani, A. K. 1998,“An H1 –Galerkin mixed finite element method for parabolic partial differential equations”, SIAM Journal on Numerical Analysis 35-2, 712-727.
Wheeler, M. F. 1973, “A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations”, SIAM Journal on Numerical Analysis10-4, 723-759.
Adams, R. A. and Fournier, J. J. F. 2003, Sobolev Spaces, Elsevier Science, Netherlands.
Dupont, T. 1973, “L2-estimates for Galerkin methods for second order hyperbolic equations”, SIAM Journal on Numerical Analysis10-5,880-889.