Keywords:-

Keywords: Differential Equations, Galerkin, Approximation, Error Estimates

Article Content:-

Abstract

Discuss Galerkin approximation to a type of second order nonlinear hyperbolic partial differential equations. Provide continuous time Galerkin approximation and fully discrete Galerkin approximations and derive optimal L2-error estimates for continuous time and fully discrete Calerkin approximations, separately.

References:-

References

Repin, S. 2017, “One hundred years of the Galerkin method”, Computational Methods and Applied Mathematics, 17-3, 351-357.

Alhammali, A. and Peszynska, M. 2020,“Numerical analysis of a parabolic variational inequality system modeling biofilm growth at the porescale”. Numerical Methods for Partial Differential Equations, 36-5, 941-971.

Chaudhary, S. 2018,“Crank-Nicolson-Galerkin finite element scheme for nonlocal coupled parabolic problem using the Newton method”, Mathematical Methods in the Applied Sciences41-2, 724-749.

Pani, A. K. 1998,“An H1 –Galerkin mixed finite element method for parabolic partial differential equations”, SIAM Journal on Numerical Analysis 35-2, 712-727.

Wheeler, M. F. 1973, “A priori L2 error estimates for Galerkin approximations to parabolic partial differential equations”, SIAM Journal on Numerical Analysis10-4, 723-759.

Adams, R. A. and Fournier, J. J. F. 2003, Sobolev Spaces, Elsevier Science, Netherlands.

Dupont, T. 1973, “L2-estimates for Galerkin methods for second order hyperbolic equations”, SIAM Journal on Numerical Analysis10-5,880-889.

Downloads

Citation Tools

How to Cite
Yu, Y. (2021). Error Estimates for Galerkin Method to a Type of Partial Differential Equations. International Journal Of Mathematics And Computer Research, 9(7), 2348-2356. https://doi.org/10.47191/ijmcr/v9i7.04