Keywords:-
Article Content:-
Abstract
The purpose of this paper is to discover and examine a four-dimensional Pascal matrix domain on Pascal sequence spaces. We show that they are spaces and also establish their Schauder basis, topological properties, isomorphism and some inclusions.
References:-
References
Polat, H. (2018). Some new Pascal sequence spaces. Fundamental Journal of Mathematics and Applications, 1(1), 61-68.
Moricz, F. (1991). Extensions of the spaces c and c_0 from single to double sequences. Acta Mathematica Hungarica, 57(1-2), 129-136.
Pringsheim, A. (1900). Zur theorie der zweifach unendlichen Zahlenfolgen. Mathematische Annalen, 53(3), 289-321.
Aggarwala, R., & Lamoureux, M. P. (2002). Inverting the Pascal matrix plus one. The American mathematical monthly, 109(4), 371-377.
Malkowsky, E., & Rakocevic, V. (2000). An introduction into the theory of sequence spaces and measures of noncompactness. Zb. Rad. (Beogr.), 9(17), 143-234.
Loganathan, S., & Moorthy, C. G. (2016). A net convergence for Schauder double bases. Asian-European Journal of Mathematics, 9(01), 1650010.
Rao, K. C., & Subramanian, N. (2004). The Orlicz space of entire sequences. International Journal of Mathematics and Mathematical Sciences, 2004(68), 3755-3764.
Basar, F., & Sever, Y. (2009). The space L q of double sequences. Mathematical Journal of Okayama University, 51(1), 149-157.
Yeşilkayagil, M., & Başar, F. (2016). Some topological properties of the spaces of almost null andalmost convergent double sequences. Turkish Journal of Mathematics, 40(3), 624-630.