Keywords:-
Article Content:-
Abstract
Introduced the homological algebra and presented some interesting basic properties of the notion.In this paper we extend the above notion to homology groups and tried to proof the some similar basic properties of the topological homolog groups. We also studied more about the random graph groups of the homology order to find necessary and sufficient conditions for which the hematology is discrete. We followed the analytical induction mathematical method and we found that studying homology groups may be more important than cohomology groups.
References:-
References
A.E. Costa. M. Farber. T. Kappeler, Topology of random 2-compleres, preprint 2010, arXiv:1006.4229.
A.E. Costa, M. Farbøf. Topology of random right angled Artin groups, Journal of Topology and Analysis, 3(2011). 289-87.
Bollubis, Random Graphs. Second edition, Cambridge University Press, 2008. Cambridge Stud. Adv. Math., 73, Cambridge, 2001.
D. Cohen. M. Farber. T. Kappeier, The homolopical dimension of random 2-compleres, preprint 2010. arXiv:1005.3383v1.
D. Cohen. A.E. Costa. M. Farber, T. Kappeler, Topology of random 2-complexes, to appear in Discrete and Computational Geometry.
E Babson. C. Hoffman, M. Kahle, The fundamental group of random 2-compleres, J. Amer. Math. Soc. 24 (2011), 1-28.
L. Aronsitan., N. Linial, T. Luczak, R. Meshulam, Vanishing of the top homology of a random complex. arXiv:1010.1400.
N. Alon. J. Spencer. The Probabilistic Method, Third edition. Wiley-Intersci. Ser. Discrete Math. Optim.. John Wiley & Sons, Inc., Hoboken, NJ. 2008.
R. Charncy, An introduction to right-angled Artin groups, Geom. Dedicata 125 (2007), 141-158.
R. Charnev. M. Farber, Random groups arising as graph products, arXiv:1006.3378.
R. Charney, K. Vogtmann, Finitepless properties of automorphism groups of right-angled Artin groups. Bulletin LMS (2009); doł: 10.1112/blms/bdn 108.
R. Charney, K. Vogtrany. Subgroups and quotients of automorphism groups of RAAGS. arXiv:0909.2444.