Keywords:-
Article Content:-
Abstract
In this paper, we are interested in the study of a degenerate reaction-diffusion model, where we prove the existence of positive maximal and minimal solutions, including the uniqueness of the positive solution. The technique used is mainly based on the method of upper and lower solutions.
References:-
References
N. Alaa, S. Mesbahi, W. Bouarifi. Global existence of weak solutions for parabolic triangular reaction diffusion systems applied to a climate model. An. Univ. Craiova Ser. Mat. Inform., 42 (1) (2015) 80-97.
N. Alaa, S. Mesbahi, A. Mouida, W. Bouarifi. Existence of solutions for quasilinear elliptic degenerate systems with L^1 data and nonlinearity in the gradient. Electron. J. Diff. Equ., 142 (2013) 1-13.
P. Alvarez-Caudevilla, Y. Du, R. Peng. Qualitative Analysis of a Cooperative Reaction-Diffusion System in a Spatiotemporally Degenerate Environment. SIAM Journal on Mathematical Analysis, 46 (2014) 499-531.
J. R. Anderson. Local existence and uniqueness of solutions of degenerate parabolic equations. Comm. Partial Differential Equations, 16 (1991) 105-143.
J. Deuel, P. Hess. Nonlinear parabolic boundary value problems with upper and lower solutions. Israel J. Math., 29 (1978) 92-104.
A. Einav, J. Morgan, B.Q. Tang. Indirect diffusion effect in degenerate reaction-diffusion systems. SIAM Journal on Mathematical Analysis, 2020, arXiv:2001.00852 [math.AP].
W. Fitzgibbon, M. Langlais, J. Morgan, A degenerate reaction-diffusion system modeling atmospheric dispersion of pollutants. Journal of Mathematical Analysis and Applications, 307 (2005) 415-432.
O.A. Ladyženskaja, V.A. Solonnikov, N.N. Ural'ceva. Linear and Quasi-Linear Equations of Parabolic Type. Amer. Math. Soc., Providence, RI, 1968 (English transl.).
P. Lei, S.N. Zheng. Global and nonglobal weak solutions to a degenerate parabolic system. J. Math. Anal. Appl., 324 (2006) 177-198.
S. Mesbahi. Analyse mathématique de systèmes de réaction diffusion quasi-linéaires. Editions Universitaires Européennes, 2019. ISBN-13 : 978-6138492917.
S. Mesbahi, N. Alaa. Mathematical analysis of a reaction diffusion model for image restoration. An. Univ. Craiova Ser. Mat. Inform., 42 (1) (2015) 70-79.
S. Mesbahi, N. Alaa. Existence result for triangular reaction diffusion systems with L^1 data and critical growth with respect to the gradient. Mediterr. J. Math., 10 (2013) 255-275.
J.D. Murray. Mathematical Biology I : An Introduction. Springer-Verlag, New York Inc.; 3rd edition, 2002.
J.D. Murray. Mathematical Biology II : Spatial Models and Biochemical Applications. Springer-Verlag, New York Inc.; 3rd edition, 2002.
C.V. Pao, W. H. Ruan. Positive solutions of quasilinear parabolic systems with Dirichlet boundary condition. J. Differential Equations, 248 (2010) 1175-1211.
C.V. Pao. Quasilinear parabolic and elliptic equations with nonlinear boundary conditions. Nonlinear Anal., 66 (2007) 639-662.
C.V. Pao. Nonlinear Parabolic and Elliptic Equations. North Carolina State University, Springer US, 1992.
C.V. Pao, L. Zhou, X.J. Jin. Multiple solutions of a boundary value problem in enzyme kinetics. Advances in Appl. Math., 6 (1985) 209-229.
K.I. Saffidine, S. Mesbahi. Existence Result for Positive Solution of a Degenerate Reaction-Diffusion System via a Method of Upper and Lower Solutions. Nonlinear Dyn. Syst. Theory, 21 (4) (2021) 434--445.
X.S. Wang, X.Q. Zhao. Pulsating waves of a partially degenerate reaction-diffusion system in a periodic habitat. J. Differential Equations, 259 (2015) 7238-7259.