Keywords:-
Article Content:-
Abstract
In this paper, we confine over selves to obtain some results on fixed point theorems for a new category of expansive mappings called (y, a) expansive mapping in b- metric spaces. Our results are with much shorter proof and generalize many existing results in the literature. We also have given some examples to support our results.
References:-
References
Alghamdi M., Hussain N. and Salimi P., Fixed point and coupled fixed point theorems on b-metric- like spaces J. Inequal. Appl., 402 (2013).
Ali M., Kamran T. and Karapnar E.: An approach to existence of fixed points of generalized contractive multivalued mappings of integral type via admissible mapping, Abstract and Applied Analysis, vol. 2014,Article ID 141489(2014).
Amini-Harandi, A: Fixed point theory for quasi-contraction maps in b-metric spaces. Fixed Point Theory 15(2), 351-358 (2014)
Amiri, P, Rezapour, S, Shahzad, N: Fixed points of generalized α-ψ -contractions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 108, 519-526 (2014)
Aydi, H, Bota, MF, Mitrovic, S, Karapinar, E: A fixed point theorem for set-valued quasi-contractions in b-metric spaces. Fixed Point Theory Appl. 2012, 88 (2012)
Bakhtin, I. A. : The contraction principle in quasi metric spaces. In: Functional Analysis, vol. 30, pp. 26-37. Gos. Ped. Ins., Unianowsk (1989) (Russian)
Bota, MF, Karapinar, E, Mles¸nit¸e, O: Ulam-Hyers stability results for fixed point problems via α-ψ -contractive mapping in (b)-metric space. Abstr. Appl. Anal. 2013, Article ID 825293 (2013)
Bota, MF, Karapinar, E: A note on some results on multi-valued weakly Jungck mappings in b-metric space. Cent. Eur. J. Math. 11(9), 1711-1712 (2013)
Branciari A.: A fixed point theorem for mappings satisfying a general contractive condition of integral type, ijmms, 531536(2002).
Czerwik, S. : Contraction mappings in b- metric spaces, Acta Math Inf. Univ. Ostravensis, I(1993), 5-11.
Czerwik, S. Nonlinear set valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 46(1998), 263-276.
Edelstein, M : An extension of Banach’s contraction principle. Proc. Am. Math. Soc. 12, 7-10 (1961)
Hicks T. and Rhoades B.: A Banach type fixed point theorem, Math. Japon,24(1979),327-330(1979) J. Nonlinear Sci. Appl. (in press)
Jachymski, J: The contraction principle for mappings on a metric space with a graph. Proc. Am. Math. Soc. 136(4), 1359-1373 (2008)
Jovanovic M, kadelburg Z and Radenovic S. : Common fixed point results in metric type spaces, Fixed Point Theory Appl, 2010:978121(2010).
Kadelburg, Z, Radenovic´, S: Pata-type common fixed point results in b-metric and b-rectangular metric spaces.
Kang, SM: Fixed points for expansion mappings. Math. Jpn. 38, 713-717 (1993)
Karapinar E.: Fixed points results for α-admissible mapping of integral type on generalized metric spaces, Abstract and Applied Analysis, Volume 2015, Article ID 141409.
Karapinar, E, Samet, B: Generalized α-ψ contractive type mappings and related fixed point theorems with applications. Abstr. Appl. Anal. 2012, Article ID 793486 (2012)
Karapinar, E, Shahi, P, Tas, K: Generalized α-ψ -contractive type mappings of integral type and related fixed point theorems. J. Inequal. Appl. 2014, 16 (2014)
Khan, MA, Khan, MS, Sessa, S: Some theorems on expansion mappings and their fixed points. Demonstr. Math. 19, 673-683 (1986
M. Jleli and B. Samet : A new generalization of the Banach contraction principle, Journal of Inequalities and Applications 2014, 2014:38.
M. Rahman and M. Sarwar: Dislocated quasi b-metric space and fixed point theorems, Electronic Journal of Mathematical Analysis and Applications Vol. 4(2), 16-24(2016).
M. Shah, N. Hussain : Nonlinear contractions in partially ordered quasi b-metric spaces. Commun. Korean Math. Soc.27(1), 117-128 (2012)
Pacurar, M: A fixed point result for φ-contractions on b-metric spaces without the boundedness assumption. Fasc. Math. 43, 127-137 (2010)
Priya Shahi, Jatinderdeep Kaur and S.S.Bhatia : Fixed Point Theorems for (, )- Expansive Mappings in Complete Metric Spaces, Fixed Point Theory and Applications, 2012, 2012:157.
Rhoades, B.E. : A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc. 226, 257-290 (1977).
Rus, IA: Generalized Contractions and Applications. Cluj University Press, Cluj-Napoca (2001)
Saluja, A.S.; Some Fixed Point Results in b-(E.A.)Property of Integral Type Mappings in b- Metric Spaces, International Journal of Mathematics and Computer Research (IJMCR), Volume 8, Issue 10, PP 2147-2151( 2020).
Samet B., Vetro C. and Vetro P.: Fixed point theorems for α − ψ-contractive type mappings, Non- linear analysis, vol. 75, 2154-2165(2012).
Samet, B, Vetro, C, Vetro, P: Fixed point theorems for α-ψ-contractive type mappings, Nonlinear Anal. (2011). doi:10.1016/j.na.2011.10.014
Samet, B: Fixed points for α-ψ contractive mappings with an application to quadratic integral equations. Electron. J. Differ. Equ. 2014, 152 (2014)
Taniguchi, T: Common fixed point theorems on expansion type mappings on complete metric spaces. Math. Jpn. 34, 139-142 (1989)
Z. Liu, J. Li and S. Kang, Fixed point theorems of contractive mappings of integral type, Fixed Point Theory and Applications 2013, 2013:300.
Z. Liu, X. Li, S. Kang and S. Cho: Fixed point theorems for mappings satisfying contractive conditions of integral type and applications, Fixed Point Theory and Applications 2011, 2011:64.