Keywords:-

Keywords: Shrimp pond, Dynamical system, Stability, Lyapunov, Gradient Variable

Article Content:-

Abstract

In the shrimp pond aquaculture system, metabolic waste in the form of unfeed pellets and shrimp excretion can reduce water quality and increase both soluble organic matter in waters and organic deposition to sediments. A developed dynamical system was formed based on the interactions that occur between phytoplankton growth, macrobenthos density, and sediment in response to nitrogen and phosphate concentrations. The purpose of this research was to analize the stability of the proposed dynamical system. Furthermore, we determine the level of water quality in the aquaculture system based on the interaction between four variables, i.e. nitrogen, abundance of phytoplankton, abundance of macrobenthos, and sediment properties. The Lyapunov stability theory using the Gradient Variable method was used to determine the global stability of the systems. Assumption of this method is determine and for gradient variable function. In the Lyapunov function, if the value of the scalar function is definite positive and its first derivative is definite negative, then the system is globally asymptotically stable. Based on mathematical analysis and numerical simulation, the shrimp pond dynamical system model in BBPBAP Jepara, Indonesia was globally asymptotically stable at equilibrium point.

References:-

References

I. Arismendi and B. E. Penaluna. 2016. “Examining Diversity Inequities in Fisheries Science : A Call to Action,” vol. 66, no. 7, pp. 584–591, doi: 10.1093/biosci/biw041.

C. To, F. Security, and N. F. O. R. All. 2016. THE STATE OF WORLD FISHERIES AND AQUACULTURE.

J. Cardoso-mohedano et al., 2016. “Science of the Total Environment Reducing nutrient impacts from shrimp ef fl uents in a subtropical coastal lagoon,” Sci. Total Environ., vol. 571, no. July, pp. 388–397, 2016, doi: 10.1016/j.scitotenv.06.140.

P. Yang, D. Y. F. Lai, B. Jin, D. Bastviken, L. Tan, and C. Tong. 2017. “Science of the Total Environment Dynamics of dissolved nutrients in the aquaculture shrimp ponds of the Min River estuary , China : Concentrations , fl uxes and environmental loads,” Sci. Total Environ., vol. 603–604, pp. 256–267, 2017,

doi: 10.1016/j.scitotenv. 06.074.

J. A. Hargreaves. 1997. “A simulation model of ammonia dynamics in commercial catfish ponds in the southeastern United States,” vol. 16, pp. 27–43.

K. Lorenzen and J. Struve, 1997. “Impact of farming intensity and water management on nitrogen dynamics in intensive pond culture : a mathematical model applied to Thai commercial shrimp farms,” pp. 493–507.

A. Meuret. 2001. “Modeling approach of nitrogen and phosphorus exchanges at the sediment – water interface of an intensive fishpond system,”

L. E. Meijer and Y. Avnimelech. 1999. “On the use of micro-electrodes in fish pond sediments,” vol. 21, pp. 71–83.

M. A. Burford and A. R. Longmore. 2001. “High ammonium production from sediments in hypereutrophic shrimp ponds,” vol. 224, pp. 187–195.

M. A. Burford and K. Lorenzen. 2004. “Modeling nitrogen dynamics in intensive shrimp ponds: The role of sediment remineralization,” Aquaculture, vol. 229, no. 1–4, pp. 129–145,

doi: 10.1016/S0044-8486(03)00358-2.

U. F. Architecture, M. A. Romli, S. Daud, Y. Qian, and H. Zhang. 2018. “Modeling of nitrogen transformation in an integrated multi-trophic aquaculture (IMTA) Modeling of nitrogen transformation in an integrated multi- trophic aquaculture (IMTA),”

E. Triyana, Widowati, S. P. Putro. 2020. “Globally stability analysis of the mathematical model in the IMTA system by using the energy-Casimir method Globally stability analysis of the mathematical model in the IMTA system by using the energy-Casimir method,” doi: 10.1088/1742-6596/1524/1/012052.

L. F. Ribeiro, G. F. Eça, F. Barros, and V. Hatje, 2015. “Impacts of shrimp farming cultivation cycles on macrobenthic assemblages and chemistry of sediments *,” Environ. Pollut., vol. 211, pp. 307–315, doi: 10.1016/j.envpol. 12.031.

S. P. Putro. 2014. Metode Sampling Penelitian Makrobenthos dan Aplikasinya. Semarang: Graha Ilmu.

Ittok Rochmad Choirudin, Mustofa Niti Supardjo, and Max Rudolf Muskananfola. 2014. Studi Hubungan Kandungan Bahan Organik Sedimen dengan Kelimpahan Makrozoobenthos di Muara Sungai Wedung Kabupaten Demak, “http://ejournals1.undip.ac.id/index.php/maquares,” vol. 3, pp. 168–176.

M. Ulfa, P. Gde, S. Julyantoro, A. Hermawati, and W. Sari. 2018. “Keterkaitan Komunitas Makrozoobentos dengan Kualitas Air dan Substrat di Ekosistem Mangrove Taman Hutan Raya Ngurah Rai Bali,” vol. 4, pp. 179–190.

R. Sundari, J. Matematika, F. Matematika, P. Alam, and A. S. Lorenz. 2017. “Konstruksi Fungsi Lyapunov untuk Menentukan Kestabilan,” vol. 6, no. 1, pp. 1–5.

Hassan K. Khalil. 2002. T. Edition, Nonlinear Systems Third Edition. Prentice-Hall, Inc, Upper Saddle River, NJ 07458.

X. Liao, L. Wang, and P. YU. 2007. “Stability of Dynamical System,” Elsevier.

Didin Adri, 2016. A Note Lecturer “REGRESSION ANALYSIS IN NUMERICAL ANALYSIS WITH MAPLE”. Muhammadiyah Buton University-Baubau.

Y. Li, Y. Liu, L. Zhao, A. Hastings, and H. Guoaa. 2015. “Exploring Change of Internal Nutrients Cycling in a Shallow Lake : A Dynamic Nutrient Driven Phytoplankton Model,” Ecol. Modell., vol. 313, pp. 137–148.

Downloads

Citation Tools

How to Cite
Laksanahati, T., ., W., Putro, S. P., Adhy, S., Helmi, M., & Rostika, R. (2022). Dynamical System Stability Analysis of the Interaction Nitrogen, Phytoplankton, Macrobenthos, and Sediment with Gradient Variable Method. International Journal Of Mathematics And Computer Research, 10(2), 2564-2572. https://doi.org/10.47191/ijmcr/v10i2.03