Keywords:-

Keywords: coupling strength, FitzHugh-Nagumo model, global attractor, linear coupling, synchronization

Article Content:-

Abstract

This work considers networks of two nodes with bidirectionally and unidirectionally linear coupling. Each node is represented by a system of ordinary differential equations of FitzHugh-Nagumo type which is obtained by simplifying the famous Hodgkin-Huxley model. From two network topologies, the existence of global attractors, and the sufficient condition under the coupling strength are sought such that the synchronization phenomenon occurs. The result shows that the network with bidirectionally linear coupling synchronizes more easily than the other. The paper also shows this theoretical result numerically and see that there is a compromise.

References:-

References

Aziz-Alaoui, M. A.. "Synchronization of Chaos". Encyclopedia of Mathematical Physics, Elsevier, Vol. 5, p. 213-226, 2006.

Corson, N. Dynamique d'un modèle neuronal, synchronisation et complexité, Thèse de l'Université du Havre. 2009.

[Pikovsky, A., Rosenblum, M., & Kurths, J. Synchronization, A Universal Concept in Nonlinear Science. Cambridge: Cambridge University Press, England. 2001.

Ermentrout, G. B., & Terman, D. H. Mathematical Foundations of Neurosciences, Springer. 2009.

Hodgkin, A. L., & Huxley, A. F. "A quantitative description of membrane current and its application to conduction and excitation in nerve", J. Physiol.117, p. 500-544, 1952.

Izhikevich, E. M. Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting, The MIT Press, Cambrige, Massachusetts, London, England. 2005.

Murray, J. D. Mathematical Biology, Springer. 2010.

Izhikevich, E. M. Dynamical Systems in Neuroscience, The MIT Press. 2007.

Keener, J. P., & Sneyd, J. Mathematical Physiology, Springer. 2009.

Nagumo, J., Arimoto, S., & Yoshizawa, S. "An active pulse transmission line simulating nerve axon", Proc. IRE. 50, p. 2061-2070, 1962.

Temam, R. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer. 1988.

Ambrosio B. and Aziz-Alaoui M. A., "Synchronization and control of coupled reaction-diffusion systems of the FitzHugh-Nagumo-type", Comput. Math. Appl., 64,p. 934–943, 2012.

Ambrosio B. and Aziz-Alaoui M. A., "Basin of Attraction of Solutions with Pattern Formation in Slow-Fast Reaction-Diffusion Systems", Acta Biotheoretica, 64, p. 311–325, 2016.

Downloads

Citation Tools

How to Cite
Long Em, P., & Ngan, N. T. (2022). Comparison of Synchronization Speed of Networks Consisting of Two Ordinary Differential Systems of Fitzhugh – Nagumo Type with Bidirectionally and Unidirectionally Linear Coupling. International Journal Of Mathematics And Computer Research, 10(07), 2812-2816. https://doi.org/10.47191/ijmcr/v10i7.06