Keywords:-
Article Content:-
Abstract
Object of the present paper is to study pseudo Hermitian magnetic curves in (κ,µ) manifold admitting Zamkovoy connection. We give main classification theorem for pseudo-Hermitian magnetic curve. Again we find the curvature and torsion of magnetic curves in a (κ,µ)-manifold admitting Zamkovoy connection.
References:-
References
D.E.Blair, contact manifolds in Riemannian geometry, Lecture notes in math. 509, Springer Verlang, New York, 1973..
S.L. Druta-Romaniuc, J. Inoguchi, M.I.Munteanu and A.I.Nistor, Magnetic curves in Sasakian manifolds, Journal of Non-linear Mathematical Physics, 22 (2015) 428-447.
S.L. Druta-Romaniuc, J. Inoguchi, M.I.Munteanu and A.I.Nistor, Magnetic curves in Sasakian manifolds, Rep. Math. Phys. 78(2016) 33-48.
S. Guvenc and C.Ozgur, On Slant magnetic curves in S-manifolds, J.Nonlinear Math. Phys. 26(2019) no.4, 536-554.
M.Jleli, M.I. Munteanu and A.I. Nistor, Magnetic trajectory in an almost contact metric manifold R2N=1, Results Math. 67 (2015) 125-134.
M.I.Munteanu, The Landau-Hall problem on canal surfaces, J.Math. Anal. Appl. 414(2014) 725-733.
J.I.Inoguchi, M.I.Munteanu, A.I.Nistor, Magnetic curves in quasi-Sasakian 3-manifolds, Beitr Algebra Geom. 55 (2014): 603-620.
J.I.Inoguchi, J.E.Lee, On slant curves in normal almost contact metric 3-manifolds, Beitr Algebra Geom. 55(2014): 603-620.
J.B. Jun, A.Yildiz and U.C. De, on φ-recurrent (κ,µ)-contact metric manifolds, Bulletin of the Korean Mathematical Society 45(4), (2008); 689-700.
Z.Erjavec and J.I.Inoguchi, On magnetic curves in almost Cosymplectic Sol space, Results Math. 75 (2020) 113.
J.E.Lee, Pseudo-Hermitian Magnetic curves in Normal Almost contact metric 3-manifolds, Commun. Korean. Math. Soc. 35(2020), No. 4, pp.1269-1280.
J.E.Lee, Slant cuurves and contact magnetic curves in Sasakian Lorentzian 3-manifolds, symmetry 2019, 11, 784.
S. Zamkovoy, Canonical connections on paracontact manifolds. Ann. Global Anal. Geom. 36(1) (2009),37 –60.