Keywords:-
Article Content:-
Abstract
A classical Burger’s equation is studied by symmetry analysis. The Lie point symmetries con-
structed are applied in symmetry reductions and the resulting reduced systems investigated for
exact group-invariant solutions. We also construct solitons using symmetry span of space and
time translations. Finally, we prove that Burgers equation is a conservation law by the multiplier
technique.
References:-
References
Almeida, M., Magalhaes, M., and Moreira, I. Lie symmetries and invariants of the lotka–
volterra system. Journal of Mathematical Physics, 36(4):1854–1867, 1995.
Arrigo, D. J. Symmetry analysis of differential equations: an introduction. John Wiley &
Sons, 2015.
Bluman, G. and Anco, S. Symmetry and integration methods for differential equations,
volume 154. Springer Science & Business Media, 2008.
Bluman, G. W. and Kumei, S. Symmetries and differential equations, volume 81. Springer
Science & Business Media, 1989.
Bluman, G. W., Cheviakov, A. F., and Anco, S. C. Applications of symmetry methods to
partial differential equations, volume 168. Springer, 2010.
Brauer, F., Castillo-Chavez, C., and Castillo-Chavez, C. Mathematical models in population
biology and epidemiology, volume 2. Springer, 2012.
Burgers, J. M. A mathematical model illustrating the theory of turbulence. Advances in
applied mechanics, 1:171–199, 1948.
Ibragimov, N. Elementary Lie group analysis and ordinary differential equations. Wiley,
Ibragimov, N. H. CRC handbook of Lie group analysis of differential equations, volume 1-3.
CRC press, 1994.
[10] Ibragimov, N. H. Selected works. Volume 1-4. ALGA publications, Blekinge Institute of
Technology, 2006-2009.
Ibragimov, N. H. A new conservation theorem. Journal of Mathematical Analysis and
Applications, 333(1):311–328, 2007.
Ibragimov, N. H. A Practical Course in Differential Equations and Mathematical Modelling:
Classical and New Methods. Nonlinear Mathematical Models. Symmetry and Invariance
Principles. World Scientific Publishing Company, 2009.
Khalique, C. M. and Abdallah, S. A. Coupled Burgers equations governing polydispersive
sedimentation; a lie symmetry approach. Results in Physics, 16, 2020.
LeVeque, R. J. Numerical methods for conservation laws, volume 3. Springer, 1992.
Lie, S. Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transforma-
tionen. BG Teubner, 1891.
Mhlanga, I. and Khalique, C. Travelling wave solutions and conservation laws of the
Korteweg-de Vries-Burgers Equation with Power Law Nonlinearity. Malaysian Journal of
Mathematical Sciences, 11:1–8, 2017.
Murray, J. D. An introduction. Springer, 2002.
Noether, E. Invariant variations problem. Nachr. Konig. Gissel. Wissen, Gottingen. Math.
Phys. Kl, pages 235–257, 1918.
Olver, P. J. Applications of Lie groups to differential equations, volume 107. Springer
Science & Business Media, 1993.
Ovsyannikov, L. Lectures on the theory of group properties of differential equations. World
Scientific Publishing Company, 2013.
Owino, J. O. Exact symmetry reduction solutions of a nonlinear coupled system of korteweg-
de vries equations. nternational Journal of Advanced Multidisciplinary Research and Stud-
ies, 2:76–87, 2022.
Owino, J. O. and Okelo, B. Lie group analysis of a nonlinear coupled system of korteweg-de
vries equations. European Journal of Mathematical Analysis, 1:133–150, 2021.
Owuor, J. Conserved quantities of a nonlinear coupled system of korteweg-de vries equa-
tions. International Journal of Mathematics And Computer Research, 10(5):2673–2681,
Owuor, J. Exact symmetry reduction solutions of a nonlinear coupled system of korteweg-de
vries equations. International Journal of Advanced Multidisciplinary Research and Studies,
(3):76–87, 2022.
P.E, H. Symmetry methods for differential equations: a beginner’s guide, volume 22. Cam-
bridge University Press, 2000.
Wazwaz, A.-M. Partial differential equations and solitary waves theory. Springer Science
& Business Media, 2010.