Keywords:-
Article Content:-
Abstract
In this paper, we give a detailed analysis for the explicit finite difference approximation for time fractional soil moisture diffusion equation (TFSMDE). Furthermore, the stability and convergence of the scheme in a bounded domain are discussed. As an application of the scheme we solve some test problems and their solutions are represented graphically by a powerful software Mathematica.
References:-
References
O. P. Agrawal, Solution for a Fractional Diffusion-Wave Equation Defined in
a Bounded Domain, J. Nonlinear Dynamics 29, (2002).
D. Baleanu,J.A. Machado and A.C.J. Luo, Fraction Dynamics and Control,
Springer, New York Dordrecht Heidelberg, London, (2012).
A. P. Bhadane and K. C. Takale, Basic Developments of Fractional Calculus
and its Applications, Bulletin of Marathwada Mathematical Society, Vol.
,(2011).
Daniel Hillel, Introduction to Soil Physics, Academic Press (1982).
M. K. Datar, S. R. Kulkarni and K. C. Takale, Finite Difference Approximation
for Black-Scholes Partial Differential Equation and Its Application, Int
Jr. of Mathematical Sciences and Applications, Vol 3,(2013).
D. B. Dhaigude and K. C. Takale, Two Level Explicit Finite Difference
Scheme for One-Dimensional Penne’s Bioheat Equation, Recent Advances in
Mathematical Sciences and Applications, p. 230-238,(2009)
Don Kirkham and W.L. Powers, Advanced Soil Physics, Wiley-Interscience
(1971).
G. Gao and Z. Sun, A compact finite difference scheme for the fractional
sub-diffusion equations, J. Comput. Phys., 230:586-595,(2011).
R. Goren
o and F. Mainardi, Approximation of Levy-Feller Diffusion
by Random Walk, Journal for Analysis and its Applications (ZAA) 18:231-
,(1999).
R. Goren
o, F. Mainardi, D. Moretti and P. Paradisi, Time Fractional
Diffusion: A Discrete Random Walk Approach, Nonlinear Dynamics 29, (2002)
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore
(2000).
A. A. Kilbas, H. M. Srivastava and J. J. Trijillo, Theory and Applications
of Fractional Differential Equations, North-Holland Mathematical Studies, Vol
,(2006).F. Liu, V. Anh, I. Turner and P. Zhuang, Numerical Simulation for solute
transport in fractal porous media, ANZIAM J. 45(E),(2004).
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional
diffusion equation, J. Comput. Phys. 225 , pp.1533-1552:(2007)
M.M. Meerschaert, C. Tadjeran, Finite difference approximations for twosided
space-fractional partial differential equations, Appl. Numer. Math. 56:80-
,(2006)
M.M. Meerschaert, C. Tadjeran, Finite difference approximations for
fractional advection-dispersion flow equations, J. Comput. Appl. Math. 172:65-
,(2004).
R. Metzler and J. Krafter, The Random Walks Guide to Anomalous Diffusion:
A Fractional Dynamic Approach, Physical Reports 339, (2000).
K. S. Miller, B. Ross, An introduction to the Fractional Calculus and Fractional
Differential Equations, John Wiley and Sons, New York,(1993).
Momani S, Odibat Z, Numerical comparison of methods for solving linear
differential equations of fractional order, Chaos Soliton Fract 31:12481255,(2007).
Momani S, Odibat Z, Numerical approach to differential equations of fractional
order, J Comp Appl Math 207(1):96110, (2007).
Pater A.C., Raats and Martinus TH. Ven Genuchten, Milestones in Soil
Physics, J. Soil Science 171,1(2006).
I. Podlubny, Fractional Differential equations, Academic Press, San Diago
(1999).
M. Rehman, R. A. Khan, A numerical method for solving boundary value
problems for fractional differential equations, Appl. Math. Model., 36(3), 894-
, (2012).
B.Ross (Ed), Fractional Calculus and Its Applications, Lecture Notes in Mathematics,
Vol.457, Springer-Verlag, New York ( 1975).
S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals
and Derivatives: Theory and Applications, Gordan and Breach, Newark, N. J.,
(1993).
S. Shen, F.Liu, Error Analysis of an explicit Finite Difference Approximation
for the Space Fractional Diffusion equation with insulated ends, ANZIAM J.46
(E), pp. C871 - C887: (2005).
G.D. Smith, Numerical Solution of Partial Differential Equations, (2ndEdn.),
Clarendon Press, Oxford, (1978).K. C. Takale and A. S. Shinde, Study of Black-Scholes Model and its Applications,
Elsevier Ltd., Journal ”Procedia Engineering” , Vol. 38, (2012).
W. Wyss and W. R. Schneider, Fractional Diffusion and wave equations, J.
Math. Phys. 30,(1989).
W. Wyss, The Fractional Diffusion Equation, J. Math. Phys. 27,(1986).